摘要:
A method for fabricating epitaxial cobalt disilicide layers uses a cobalt-nitride thin film. Epitaxial cobalt disilicide (CoSi2) layers are fabricated using a cobalt-nitride thin film in a salicide process, wherein a silicide is formed on source/drain regions and a polysilicon gate electrode of a nanoscale MOS transistor. Epitaxial CoSi2 layers can be fabricated on source/drain regions and a gate electrode of a silicon substrate using a cobalt-nitride thin film, without the formation of an interlayer between a cobalt layer and the silicon substrate.
摘要:
A method for fabricating epitaxial cobalt disilicide layers uses a cobalt-nitride thin film. Epitaxial cobalt disilicide (CoSi2) layers are fabricated using a cobalt-nitride thin film in a salicide process, wherein a silicide is formed on source/drain regions and a polysilicon gate electrode of a nanoscale MOS transistor. Epitaxial CoSi2 layers can be fabricated on source/drain regions and a gate electrode of a silicon substrate using a cobalt-nitride thin film, without the formation of an interlayer between a cobalt layer and the silicon substrate.
摘要:
A method for increasing the plasma high density lipoprotein(HDL) level in a mammal comprises administering a bioflavonoid of formula(I) or plant extract containing same thereto: ##STR1## wherein, R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5.sub.7 R.sup.6, R.sup.7, R.sup.8 and R.sup.9 are each independently hydrogen; a hydroxy group; a C.sub.1-9 alkoxy group optionally substituted with one or more substituents selected from the group consisting of a hydroxy, C.sub.1-5 alkoxy, aryloxy, and phenyl group substituted with 1 to 3 substituents selected from the group consisting of a hydroxy, alkoxy, aryloxy, halogen, nitro and amido group; a C.sub.5-9 cycloalkyloxy group substituted with 1 to 3 substituents selected from the group consisting of a hydroxy, alkoxy, aryloxy, halogen, nitro and amido group; a C.sub.5-9 cycloalkylcarbonyloxy group substituted with 1 to 3 substituents selected from the group consisting of a hydroxy, alkoxy, aryloxy, halogen, nitro and amido group; a C.sub.2-10 or C.sub.16-18 acyloxy group optionally substituted with one or more substituents selected from the group consisting of a hydroxy, C.sub.1-5 alkoxy, aryloxy, and phenyl group substituted with 1 to 3 substituents selected from the group consisting of a hydroxy, alkoxy, aryloxy, halogen and nitro group; a rutinosyl group; or a rhaminosyl group; andX is a single or double bond.
摘要:
A superconducting multilayer ceramic substrate is disclosed, prepared by firing a laminate of at least two polymer bonded cast sheets of a ceramic dielectric oxide powder, at least one sheet of which has a metallization pattern provided thereon, to thereby form a superconducting oxide reaction layer at the interface between the sintered ceramic material and the embedded metallic conductor lines of the metallization pattern.
摘要:
A transparent light-emitting conductive layer includes a Transparent Conductive Oxide (TCO) and a dopant. An electron emission device having the transparent light-emitting conductive layer includes: a front substrate; a first electrode arranged on the front surface, the first electrode having a transparent light-emitting conductive layer including a Transparent Conductive Oxide (TCO) and a dopant; a fluorescent layer arranged on the first electrode; a rear substrate spaced apart from and facing the front substrate; an electron emission region arranged on the rear substrate; and a second electrode adapted to control electron emission in the electron emission region. The electron emission device can be used as an electron emission display device or a back-light unit. The transparent light-emitting conductive layer induces additional light emission using excess electrons that did not participate in the light emission in a fluorescent layer and thus results in improvements in color purity, reproduction range of colors, brightness, and color rendering properties when used in a device.
摘要:
The present invention relates to a process for preparing a polycrystalline silicon thin film comprising a step of microwave annealing and crystallization of an amorphous thin film of silicon semiconductor, silicon semiconductor added with impurities, IV family semiconductor comprising Si alloy such as Si1−xGex, III-V family and II-VI family semiconductor. The process for preparing polycrystalline silicon thin film of the present invention comprises the steps of: immersing a washed substrate into a deposition equipment and heating the substrate; depositing an amorphous or microcrystalline silicon thin film on the substrate; and, annealing the deposited thin film employing microwave for crystallization.