Abstract:
Asymmetric membrane structures are provided that are suitable for various types of separations, such as separations by reverse osmosis. Methods for making an asymmetric membrane structure are also provided. The membrane structure can include at least one polymer layer. Pyrolysis can be used to convert the polymer layer to a porous carbon structure with a higher ratio of carbon to hydrogen.
Abstract:
This invention relates to a process for separating a hydrocarbon stream via a filtration process to produce an upgraded permeate stream with decreased Conradson Carbon Residue (“CCR”) content. The invention involves the modification of a porous ceramic filter by functionalizing the surface of the ceramic filter with an multi-ring aromatic-diimide polymer. Preferably, the multi-ring aromatic-diimide polymer is comprised of a multi-ring aromatic monomer component. The functionalized filters of the present invention can be used in a process to selectively separate components of a hydrocarbon stream to produce an improved permeate (or “filtrate”) product stream with a lower CCR content and improved processing capabilities. The functionalized filters of the present invention are particularly beneficial in filtration processes for upgrading heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, oils derived from bitumens, oils derived from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams.
Abstract:
A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at 0.5:1 (approaching 1:1) may be achieved.
Abstract:
The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
Abstract:
The present invention relates to a polymeric aromatic selective membrane comprising an cross linked polyether imide membrane that comprise the reaction of a polyether amine with an dianhydride, and that may be utilized in a process for selectively separating aromatics from a hydrocarbon feedstream comprised of aromatic and aliphatic hydrocarbons and at least one alcohol, typically ethanol.
Abstract:
The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
Abstract:
The present invention relates to the modification of the internal surfaces of zeolite crystals via treatment with alcohols containing at least four carbon atoms. The modified zeolites possess high thermal stability and the properties of the modified zeolites can be tailored to provide improved performance for use in separations processes.
Abstract:
Asymmetric membrane structures are provided that are suitable for various types of separations, such as separations by reverse osmosis. Methods for making an asymmetric membrane structure are also provided. The membrane structure can include at least one polymer layer. Pyrolysis can be used to convert the polymer layer to a porous carbon structure with a higher ratio of carbon to hydrogen.
Abstract:
A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at 0.5:1 (approaching 1:1) may be achieved.
Abstract:
A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at 0.5:1 (approaching 1:1) may be achieved.