Abstract:
There is provided a denitrification apparatus capable of reducing NOx from a combustion facility and preventing evaporation of a reducing liquid in a lance and an injection nozzle in the combustion facility in operation at a low load by adjusting concentration of a reducing agent, thereby achieving complete evaporation of the reducing liquid in an exhaust gas duct. The denitrification apparatus of the present invention includes: a nozzle for spraying a reducing liquid containing a reducing agent for reducing nitrogen oxides in exhaust gas discharged from a combustion facility into the exhaust gas by using a flow of gas; a gas supply unit for supplying the gas to the nozzle; a reducing liquid supply unit for supplying the reducing liquid to the nozzle; and a concentration control unit for adjusting concentration of the reducing agent on the basis of a temperature of the exhaust gas and a supply amount of the reducing liquid by supplying a diluting liquid to the reducing liquid so that the reducing agent is not vaporized in the reducing liquid supply unit.
Abstract:
An exhaust gas treatment system comprising: a CO2 chemical absorption equipment comprising an absorption column which absorbs carbon dioxide (CO2) in a combustion exhaust gas discharged from a combustion device with the use of an absorbing solution comprising an amine compound as a main component and a regeneration column which regenerates the absorbing solution by desorbing CO2 from the absorbing solution which absorbed CO2; a flash tank which depressurizes the absorbing solution withdrawn from a lower part of the regeneration column to flash-evaporate the absorbing solution; a vapor recompression equipment which compresses the vapor generated by the flash tank; a temperature control device which adjusts the vapor compressed by the vapor recompression equipment to be within a predetermined temperature; and a piping for feeding the vapor adjusted to the predetermined temperature by the temperature control device to the regeneration column.
Abstract:
A carbon dioxide (CO2) chemical absorption system comprising: a CO2 absorption column for separating CO2 from combustion exhaust gas by absorbing the CO2 in the combustion exhaust gas with a CO2 absorbing liquid mainly composed of an aqueous alkanolamine solution; a regeneration column for regenerating the CO2 absorbing liquid by desorbing CO2 gas from the CO2 absorbing liquid that has absorbed CO2; a condenser for condensing water vapor entrained in the desorbed CO2 gas discharged from the top of the regeneration column, thereby obtaining reflux water; a pipe for returning all or part of the reflux water obtained by the condenser to the top of the regeneration column, and dispersing the reflux water in the regeneration column; a collection plate for collecting the reflux water dispersed in an upper portion of a packed bed in the regeneration column; a pipe for sending the regenerated CO2 absorbing liquid from the bottom of the regeneration column to the top of the absorption column; and a pipe for joining the reflux water collected by the collection plate into the pipe for sending the regenerated CO2 absorbing liquid.
Abstract:
An exhaust gas treatment system comprising: a CO2 chemical absorption equipment comprising an absorption column which absorbs carbon dioxide (CO2) in a combustion exhaust gas discharged from a combustion device with the use of an absorbing solution comprising an amine compound as a main component and a regeneration column which regenerates the absorbing solution by desorbing CO2 from the absorbing solution which absorbed CO2; a flash tank which depressurizes the absorbing solution withdrawn from a lower part of the regeneration column to flash-evaporate the absorbing solution; a vapor recompression equipment which compresses the vapor generated by the flash tank; a temperature control device which adjusts the vapor compressed by the vapor recompression equipment to be within a predetermined temperature; and a piping for feeding the vapor adjusted to the predetermined temperature by the temperature control device to the regeneration column.
Abstract:
Provided is a catalyst structure which prevents an increase in pressure loss by a simple construction while the gas flow is efficiently stirred by a structure making contact between adjacent catalyst elements. The catalyst structure is provided with a first flat-plate part and a second flat-plate part which support, on surfaces thereof, a constituent having catalytic activity to an exhaust gas and face each other, and a stirring part which is provided in such a manner as to come into contact first with the first flat-plate part and the second flat-plate part in an extending manner from the first flat-plate part to the second flat-plate part at a prescribed angle with respect to the direction in which the exhaust gas flows.
Abstract:
Provided is a vertical-type mill whereby abrasion of a hopper and accumulation of coarse particles in the hopper can both be prevented. A vertical-type mill provided with a milling mechanism for milling a material to be milled and obtaining solid particles by meshing of a milling roller or milling ball and a milling table, a classification mechanism having a classifier for classifying milled solid particles and a hopper (11) for collecting coarse particles that are classified by the classifier and dropped downward and leading the coarse particles toward the milling mechanism, a raw material feeding pipe (1) for charging the material to be milled into the milling table, and housings (43a, b), wherein the raw material feeding pipe is provided in the hopper so that the relationship 0.15≦L′/L≦0.5 is satisfied, where, using the boundary line between a cylindrical part of the hopper and an inverted conical part of the hopper as a reference position, L is the distance from the reference position to the top end of the hopper, and L′ is the distance from the reference position to the bottom end (1a) of the raw material feeding pipe.
Abstract:
A burner including a fuel-containing fluid supply nozzle which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on a furnace wall surface. The nozzle in its cross section perpendicular to the direction of flow of the fluid has a rectangular, elliptical, or substantially elliptical form having major and minor axis parts from a connecting part in the fluid transfer flow passage toward the outlet part provided on the furnace wall surface. Further, the area of a cross section perpendicular to the direction of flow of the fluid is gradually increased from the connecting part in the fluid transfer flow passage toward the outlet part. Air supply nozzle(s) for supplying combustion air are provided on the outer peripheral part of the nozzle.
Abstract:
Provided is a catalyst structure which prevents an increase in pressure loss by a simple construction while the gas flow is efficiently stirred by a structure making contact between adjacent catalyst elements. The catalyst structure is provided with a first flat-plate part and a second flat-plate part which support, on surfaces thereof, a constituent having catalytic activity to an exhaust gas and face each other, and a stirring part which is provided in such a manner as to come into contact first with the first flat-plate part and the second flat-plate part in an extending manner from the first flat-plate part to the second flat-plate part at a prescribed angle with respect to the direction in which the exhaust gas flows.
Abstract:
There is provided a denitrification apparatus capable of reducing NOx from a combustion facility and preventing evaporation of a reducing liquid in a lance and an injection nozzle in the combustion facility in operation at a low load by adjusting concentration of a reducing agent, thereby achieving complete evaporation of the reducing liquid in an exhaust gas duct. The denitrification apparatus of the present invention includes: a nozzle for spraying a reducing liquid containing a reducing agent for reducing nitrogen oxides in exhaust gas discharged from a combustion facility into the exhaust gas by using a flow of gas; a gas supply unit for supplying the gas to the nozzle; a reducing liquid supply unit for supplying the reducing liquid to the nozzle; and a concentration control unit for adjusting concentration of the reducing agent on the basis of a temperature of the exhaust gas and a supply amount of the reducing liquid by supplying a diluting liquid to the reducing liquid so that the reducing agent is not vaporized in the reducing liquid supply unit.
Abstract:
A deviation between an inlet-outlet temperature difference of a first superheater part and an inlet-outlet temperature difference of each of second superheater parts can be reduced so that a difference in thermal expansion between the first superheater part and the second superheater part can be reduced. It is therefore possible to avoid damage on heat transfer pipes. A solar collector for a solar heat boiler is provided with: cylindrical headers (1,3,5) which are connected to opposite end portions of heat transfer pipes; and a solar heat collection portion including the heat transfer pipes and membrane bars fixing the heat transfer pipes to one another; wherein: the cylindrical headers include an inlet header (1) into which a fluid to be heated flows, an intermediate header (3) which is disposed in a position opposed to the inlet header (1) with interposition of the heat transfer pipes, and two outlet headers (5,5) which are provided to extend on opposite end sides of the inlet header and through which the fluid from the intermediate header can be discharged to the outside; and the solar heat collection portion includes a first superheating portion (2) which has a group of the heat transfer pipes connected between the inlet header (1) and the intermediate header (3) so as to form a center region of the solar heat collection portion, and second superheating portions (4,4) which have groups of the heat transfer pipes connected between the intermediate header (3) and the two outlet headers (5) so as to be formed on opposite sides of the first superheating portion (2) respectively.