Abstract:
In a silicon layer formed on an insulator layer, a lattice defect region is formed to be adjacent to a channel region and source/drain regions, and the lower part of the channel region functions as a high-concentration channel region. The holes of hole-electron pairs generated in the channel region are eliminated by recombination in the lattice defect region, thereby suppressing the bipolar operation resulting from the accumulation of holes and increasing the source/drain breakdown voltage. The threshold value of a parasitic transistor is increased by the high-concentration channel region so as to reduce the leakage current in the OFF state. Alternatively, the holes may be moved to the source region to disappear therein by providing, instead of the lattice defect region, a high-concentration diffusion layer constituting and operating as a pn diode between the channel and source regions. Thus, it is possible to provide an SOI transistor causing no decrease in the source/drain breakdown voltage resulting from substrate floating effects and causing little OFF leakage current because of the activation of the parasitic transistor.
Abstract:
A method for fabricating a nonvolatile semiconductor memory device according to the present invention includes the steps of: forming a first mask to define a channel of a memory cell in a semiconductor substrate; doping an impurity into the semiconductor substrate by using the first mask, thereby forming a first doped region in the semiconductor substrate; forming a second mask so as to overlap at least one of a first region of the semiconductor substrate where a source is to be formed and a second region of the semiconductor substrate where a drain is to be formed and at least part of the first mask; etching the semiconductor substrate by using the first and second masks, thereby forming a recessed portion in a region of the semiconductor substrate that is not covered with the first and second masks; forming a second doped region in the recessed portion of the semiconductor substrate; and removing the first and second masks, and forming a gate structure including a first insulating film, a floating gate electrode, a second insulating film and a control gate electrode at least over a side surface of the recessed portion and the channel defined by the first mask.
Abstract:
A semiconductor device includes an input/output terminal, an internal circuit connected to the input/output terminal, a first terminal for providing a first electrical potential, and a second terminal for providing a second electrical potential which is lower than the first electrical potential, the device further including: a first n-channel MOS transistor having a drain connected to the input/output terminal, a source connected to the second terminal, and a gate to be electrically connected to the first terminal; and a first switching element for switching between an electrically conductive state and a non-conductive state between the drain and the gate of the first n-channel MOS transistor, the switching element forming the electrically conductive state between the drain and the gate of the first n-channel MOS transistor when 1) a surge voltage lower than the first electrical potential is applied to the input/output terminal, and 2) an electrical potential difference between the drain and the gate of the first n-channel MOS transistor exceeds a predetermined voltage lower than a breakdown voltage of the gate of the first n-channel MOS transistor. The formation of the electrically conductive state prevents the gate oxide of the first n-channel MOS transistor from being damaged.
Abstract:
A fabrication method for semiconductor devices connecting a multi-crystal semiconductor thin film and a semiconductor region including a high density of an impurity formed in a single crystal semiconductor substrate. After forming a N-type semiconductor region as the emitter by ion implanting, for instance, as into a P-type semiconductor region as the base, a polysilicon thin film 114 is deposited so as to be implanted with As ions and then heat treated. In this case, an amorphous portion of the N-type semiconductor region and an amorphous silicon thin film in contact therewith are transformed by solid phase epitaxial growth so as to form a single crystal semiconductor region, a single-crystalline silicon thin film, and a polysilicon thin film, thus forming a bipolar element having an emitter.
Abstract:
There is disclosed a method for manufacturing a bipolar semiconductor device in which emitter region and active base region are formed by implanting impurities of first and second conduction types in a first semiconductor region of the first conduction type to be a collector through a non-single crystalline semiconductor thin film, a second semiconductor thin film is formed on the first semiconductor thin film, and an impurity of the first conduction type is introduced in the second semiconductor thin film after patterning the first and second semiconductor thin film so as to form an emitter electrode.
Abstract:
In a semiconductor integrated circuit device using a field effect transistor, such as MOS, having the end part of the drain overlapped with the gate electrode, a novel gate-drain overlap structure of excellent performance and reliability is presented. A manufacturing method for this device is also presented.
Abstract:
A system for temperature-maintaining and injecting a contrast medium allowing an injection pressure of an injecting contrast medium to be reduced and assuring easy injection of the contrast medium, the system including an injector, a pump control device, a pump head portion, a small diameter syringe, and an outer peripheral temperature-maintaining heater unit to be mounted on an outer periphery of the small diameter syringe, and the outer peripheral temperature-maintaining heater unit is connected to a heat source output terminal provided on the pump head portion.
Abstract:
Besides an input event reception unit 4 that receives an input such as a coordinate input event or the like and accumulates the coordinate input event or the like in an event queue 7, and an event executing device that performs the coordinate input event accumulated in the event queue 7, there are provided a drawing event reception unit 5 that receives a drawing event designating drawing contents on a screen, an update processing unit 14 that updates drawing contents in accordance with the drawing event received by the drawing event reception unit 5, and a drawing processing unit 16 that displays the drawing contents on the screen every time the drawing contents are updated.
Abstract:
An image processing device includes a multiplier 1 for multiplying a pixel signal P(x) by a weighting factor α0 (0≦α0≦1), a delay element 2 for delaying the pixel signal P(x) which has not been multiplied yet by the weighting factor α0 by the multiplier 1 by one pixel, and a multiplier 3 for multiplying the pixel signal P(x−1) delayed by the delay element 2 by a weighting factor α1 (0≦α1≦1), the total sum of the weighting factors α0 and α1 being larger than 1 and smaller than an upper limit αmax. An adder 4 adds the multiplication result α0·P(x) of the multiplier 1 and the multiplication result α1·P(x−1) of the multiplier 3, and a limiter 5 limits the addition result P′(x) of the adder 4 in such a way that P′(x) falls within a maximum density value Pmax.
Abstract:
An image processing device includes a car navigation processing unit 12 for processing a WQVGA signal, a TV receiving processing unit 15 for processing an NTSC signal, and an image resolution converting unit 17 which carries out an image resolution conversion of the NTSC signal from the TV receiving processing unit 15 to a WQVGA signal. The TV receiving processing unit 15 includes a pixel aspect ratio converting unit 104 for carrying out a pixel aspect ratio conversion of character data acquired from a WQVGA-ready character-font set 2, and a graphics/TV image compositing unit 106 for compositing an output from the pixel aspect ratio converting unit 104 with the NTSC signal, and for outputting a composite signal to the image resolution converting unit 17.