Abstract:
An electrostatic loudspeaker comprises a membrane structure and an electrode structure. The membrane structure comprises a central membrane portion and a circumferential membrane portion. The electrode structure is configured to electrostatically interact with the membrane structure for causing a movement of the membrane structure along an axis of movement. The electrode structure comprises a circumferential electrode portion and an opening, the circumferential electrode portion being substantially aligned to the circumferential membrane portion and the opening being substantially aligned to the central membrane portion with respect to a direction parallel to the axis of movement. In an end position of the movement of the membrane structure, the central membrane portion is configured to extend at least partially through the opening. A method for operating an electrostatic loudspeaker and a method for manufacturing an electrostatic loudspeaker are also described.
Abstract:
A tunable MEMS device and a method of manufacturing a tunable MEMS device are disclosed. In accordance with an embodiment of the present invention, a semiconductor device comprises a substrate, a moveable electrode and a counter electrode. The moveable electrode or the counter electrode comprises a first region and a second region, wherein the first region is isolated from the second region, wherein the first region is configured to be tuned, wherein the second region is configured to provide a sensing signal or control a system, and wherein the moveable electrode and the counter electrode are mechanically connected to the substrate.
Abstract:
A method for producing a microphone module includes arranging a MEMS microphone structure on a first surface of a first substrate, the first substrate further including a second surface, which is opposite to the first surface. Furthermore, a cap is arranging on the first surface of the first substrate such that the cap and the first surface enclose the MEMS microphone structure. A readout device for the MEMS microphone structure is arranged on a first surface of a second substrate which further includes a second surface, which is opposite to the first surface. The second surface of the first substrate is attached to the second surface of the second substrate.
Abstract:
For manufacturing a sound transducer structure, membrane support material is applied on a first main surface of a membrane carrier material and membrane material is applied in a sound transducing region and an edge region on a surface of the membrane support material. In addition, counter electrode support material is applied on a surface of the membrane material and recesses are formed in the sound transducing region of the membrane material. Counter electrode material is applied to the counter electrode support material and membrane carrier material and membrane support material are removed in the sound transducing region to the membrane material.
Abstract:
A micromechanical capacitive converter and a method for manufacturing a micromechanical converter comprise a movable membrane and an electrically conductive face element in a carrier layer. The electrically conductive face element is arranged opposite the membrane above a cavity. The electrically conductive face element and the carrier layer are perforated by perforation openings. The opening width of the perforation openings corresponds approximately to the thickness of the carrier layer.
Abstract:
A microphone has a substrate including an acoustically transparent substrate region, a lid with an acoustically transparent lid region, and a membrane which is held by a membrane carrier between the lid and the substrate. The acoustically transparent substrate region or the acoustically transparent lid region is provided with at least one impedance hole sized so that an acoustic impedance of the impedance hole is larger than an acoustic impedance of the acoustically transparent region of the respective other region of substrate region and lid region.
Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
Abstract:
A MEMS device and a method of making a MEMS device are disclosed. In one embodiment a semiconductor device comprises a substrate, a moveable electrode and a counter electrode, wherein the moveable electrode and the counter electrode are mechanically connected to the substrate. The movable electrode is configured to stiffen an inner region of the movable membrane.
Abstract:
A MEMS device and a method of making a MEMS device are disclosed. In one embodiment a semiconductor device comprises a substrate, a moveable electrode and a counter electrode, wherein the moveable electrode and the counter electrode are mechanically connected to the substrate. The movable electrode is configured to stiffen an inner region of the movable membrane.
Abstract:
In an embodiment, a semiconductor device includes a semiconductor substrate. The semiconductor substrate has a first cavity disposed through it, and conductive material covers at least the bottom portion of the first cavity. An integrated circuit is disposed on the top surface of the conductive material. The device further includes a cap disposed on the top surface of the substrate, such that a cavity disposed on a surface of the cap overlies the first cavity in the substrate.