Abstract:
A DRAM includes: a temperature sensor for monitoring a temperature operating condition of the DRAM; and a binary counter coupled to the temperature sensor, for receiving external commands to perform a refresh operation, and incrementing a count upon each received external command, wherein the refresh operation will be selectively skipped according to a value of the binary counter. The binary counter is activated to a first mode when the temperature sensor determines the temperature operating condition of the DRAM goes below a first threshold and activated to a second mode when the temperature sensor determines the temperature operating condition of the DRAM goes below a second threshold lower than the first threshold.
Abstract:
A method of forming a tight-pitched pattern. A target pattern including a plurality of first stripe patterns is provided. Each of the first stripe patterns has a first width and a first length. A photomask includes a plurality of second stripe patterns corresponding to the first stripe patterns is provided. Each of the second stripe patterns has a second width and a second length. A first exposure process with the photomask is provided in an exposure system. The first exposure process uses a first light source with a higher resolution that is capable of resolving the second width of each of the second stripe patterns. Finally, a second exposure process with the photo-mask is provided in the exposure system. The second exposure process uses a second light source with a lower resolution that is not adequate to resolve the second width of each of the second stripe patterns.
Abstract:
A memory array includes a plurality of digitline (DL) trenches extending along a first direction; a buried digitline between the DL trenches; a trench fill material layer sealing an air gap in each of the DL trenches; a plurality of wordline (WL) trenches extending along a second direction; an active chop (AC) trench disposed at one end of the buried digitline; a shield layer in the air gap; and a sidewall conductor around the sidewall of the AC trench.
Abstract:
A semiconductor memory device includes a substrate having thereon a memory array region and a periphery circuit region. A first dielectric layer covers the memory array region and the periphery circuit region on the substrate. A second dielectric layer covers the memory array region and the periphery circuit region on the first dielectric layer. At least a capacitor structure is provided in the memory array region. The capacitor structure includes an electrode material layer embedded in the second dielectric layer. The semiconductor memory device further includes a contact structure comprising the electrode material layer.
Abstract:
The present invention provides a single-sided access device including an active fin structure comprising a source region and a drain region; an insulating layer interposed between the source region and the drain region; a trench isolation structure disposed at one side of the active fin structure; a single-sided sidewall gate electrode disposed on the other side of the active fin structure opposite to the trench isolation structure so that the active fin structure is sandwiched by trench isolation structure and the single-sided sidewall gate electrode; and a gate protrusion laterally and electrically extended from the single-sided sidewall gate electrode and embedded between the source region and the drain region under the insulating layer.
Abstract:
A memory structure that can perform characterization of output data paths without accessing the main memory array includes: a plurality of output data paths; a plurality of registers coupled to the output data paths. The registers include: at least a first pattern register and a second pattern register, for respectively storing a first data pattern and a second data pattern; and at least a first mapping register, for storing a plurality of binary values, wherein each binary value indicates whether the first data pattern or the second data pattern should be mapped to a corresponding output data path.
Abstract:
The present invention provides a method of cross double pitch patterning for forming a contact printing mask. First, a first, a second and a third layer a successively deposited; a photoresist is deposited on the third layer, and then trimmed into a first pre-pattern, on which an oxide layer is deposited. The oxide layer is etched into spacers forming a first pattern that is then etched into the third layer. A second cross pattern is formed the same way on the third layer. Finally the first and second layers are etched with selectivity both patterns.
Abstract:
A magnetoresistive random access memory (MRAM) element includes a bottom electrode embedded in a first insulating layer; an annular reference layer in a first via hole of a second insulating layer on the first insulating layer, the annular reference layer being situated above the bottom electrode; a first gap fill material layer filling the first via hole; a barrier layer covering the annular reference layer, the second insulating layer and the first gap fill material layer; an annular free layer in a second via hole of a third insulating layer on the second insulating layer, the annular free layer being situated above the annular reference layer; and a top electrode stacked on the annular free layer.
Abstract:
A method of forming a buried bit line is provided. A substrate is provided and a line-shaped trench region is defined in the substrate. A line-shaped trench is formed in the line-shaped trench region of the substrate. The line-shaped trench includes a sidewall surface and a bottom surface. Then, the bottom surface of the line-shaped trench is widened to form a curved bottom surface. Next, a doping area is formed in the substrate adjacent to the curved bottom surface. Lastly, a buried conductive layer is formed on the doping area such that the doping area and the buried conductive layer together constitute the buried bit line.
Abstract:
A method of forming a buried bit line is provided. A substrate is provided and a line-shaped trench region is defined in the substrate. A line-shaped trench is formed in the line-shaped trench region of the substrate. The line-shaped trench includes a sidewall surface and a bottom surface. Then, the bottom surface of the line-shaped trench is widened to form a curved bottom surface. Next, a doping area is formed in the substrate adjacent to the curved bottom surface. Lastly, a buried conductive layer is formed on the doping area such that the doping area and the buried conductive layer together constitute the buried bit line.