Abstract:
A field effect transistor having a gate electrode in a recess includes a gate electrode and a source electrode in the same recess and a drain electrode outside the recess. Therefore, the gate-to-drain breakdown voltage is increased without increasing the source resistance. A method for producing such an FET includes forming a drain electrode on a semiconductor layer; depositing a first insulating film covering the drain electrode; etching a region of the first insulating film and a portion of the semiconductor layer through an aperture in the first insulating film, thereby producing a recess; depositing a metal film for forming a source electrode and a second insulating film in the recess, thereby forming a source electrode covered by the second insulating film; depositing a third insulating film and anisotropically etching the third insulating film, leaving side walls at the source electrode and the recess; depositing and patterning a gate electrode metal film, thereby forming a gate electrode in an aperture of the third insulating film and in the recess. The gate electrode is formed stably at a prescribed position in the recess and the gate length can be shortened by controlling the thickness of the third insulating film.
Abstract:
A semiconductor device comprises an active layer formed of a compound semiconductor for allowing carriers travel therethrough for exhibiting a function of the device, a protection layer including a non-doped compound semiconductor layer formed on the active layer, a pair of contact holes formed in the protection layer to expose the active layer, and an electrode filling the contact holes and covering the exposed active layer and extending on the protection layer. Generation of notch can be prevented even upon formation of a contact hole in the non-doped compound semiconductor layer and depositing electrode layer thereon.
Abstract:
In a method of making a semiconductor device, an active layer and a heavily doped cap layer are formed in turn on a semiconductor substrate, a first electrode is formed on the cap layer, a mask of a two-layer structure is formed on the cap layer, with the mask having an insulating film pattern having a non-inverted tapered opening, and a resist pattern having an inverted tapered opening and continuous with the non-inverted tapered opening, these openings being separated by a predetermined distance from the first electrode, and then a recess is formed, by performing an isotropic etching of the heavily doped layer exposed in the openings, with the recess having a bottom surface and a side wall surface rising from an edge of the bottom surface toward the upper edge with a constant radium off curvature. An oblique vapor deposition is then performed to form a second electrode to cover the bottom surface and the part of the side wall surface.
Abstract:
A method may be used to dry etch a sample including a plurality of regions different from each other in the photo-absorption of a light having a specified wavelength using an etching gas plasma. The method is capable of selectively etching the desired material from a plurality of materials having different types of band gap energies or from a plurality of materials having different band gap energies. The method includes a step of irradiating a light having the specified wavelength on the sample for reducing an etching rate of a region having a large photo-absorption coefficient to the light, thereby selectively etching a region having a small photo-absorption coefficient to the light.
Abstract:
A method for manufacturing a field effect transistor which includes one more spacer provided in the gate recess adjacent the drain sidewall than adjacent the source sidewall in the contact such that a gate metallization is displaced asymmetrically toward a source side sidewall of the recess; and method for manufacturing same wherein oblique vapor deposition of an auxiliary layer into a recess for the gate region makes it possible for a spacer therein at the source side to be removed whereas a spacer of the drain side remains in place, such that the subsequent gate metallization is positioned closer to the source than to the drain.
Abstract:
A field effect transistor having an asymmetric gate includes high dopant concentration source and drain regions. The drain region is shallower and of lower dopant concentration than the source region. The drain is spaced from the gate electrode. Therefore, an ideal FET having a reduced short channel effect and having a lower source resistance and high current drivability (gm) is obtained. When the drain region is produced by ion implantation through a film and the source region is produced by the implantation directly into the substrate, only the drain region is separated from the gate. When the insulating film on the source region is separated from the insulating film on the drain region, the insulating film on the source region is reliably selectively removed, whereby high controllability is obtained.
Abstract:
A semiconductor device having a channel region having a first and a second portion. The first and second portions of the channel region are designed so that only a small portion is substantially depleted during operation. Thus, a semiconductor device having a short gate length is fabricated.
Abstract:
A field effect transistor is disclosed in which a source region and a drain region are formed to be reverse mesa on a semi-insulating semiconductor substrate with an insulating layer thereon by using a crystal growth characteristic corresponding to the crystal orientation. A channel layer and a gate electrode are formed by self-alignment on the upper part of a void formed according to the reverse mesa of the source and the drain regions, so that the channel layer and the semiconductor substrate are electrically separated by the void. By such a construction, a leakage current and backgating effect are removed, and a fast field effect transistor is attained owing to the reduction of an effective channel length and a gate resistance.
Abstract:
This invention discloses a heterojunction type field effect transistor such as 2DEG-FET and a heterojunction type bipolar transistor such as 2DEG-HBT. The former is fabricated by applying to the formation of its source and drain regions a technique which causes the disorder of the heterojunction by introduction of an impurity such as by ion implantation or a technique which causes the disorder of the heterojunction by forming a film made of at least one kind of material selected from insulators, metals and semiconductors which have a different linear coefficient of thermal expansion from that of the material of a semiconductor substrate on the heterojunction semiconductor region which is to be disordered. The latter is fabricated by applying either of the techniques described above to a base ohmic contact region. These semiconductor devices can reduce the source-gate resistance and the parasitic base resistance. The invention discloses also the structure of the ohmic contact layer which has a trench on the surface thereof and is particularly effective for reducing the source-gate parasitic resistance.
Abstract:
A new planar, fully ion-implanted indium phosphide junction FET (JFET) fabrication process, utilizing n.sup.+ source-drain implantation, Be and Be/P p.sup.+ gate implantation, and nitride-registered gate metallization.
Abstract translation:采用n +源极 - 漏极注入,Be和Be / P p +栅极注入和氮化物注入的栅极金属化的新的平面,完全离子注入的磷化铟结FET(JFET)制造工艺。