Abstract:
Herein disclosed is a microcomputer MCU adopting the general purpose register method. The microcomputer is enabled to have a small program capacity or a high program memory using efficiency and a low system cost, while enjoying the advantage of simplification of the instruction decoding as in the RISC machine having a fixed length instruction format of the prior art, by adopting a fixed length instruction format having a power of 2 but a smaller bit number than that of the maximum data word length fed to instruction execution means. And, the control of the coded division is executed by noting the code bits.
Abstract:
Apparatus and methods are disclosed for a computation processor that can execute a semi-absolute branch instruction, as well as methods of operation and of generating the semi-absolute branch instruction.
Abstract:
Address control section includes an encoding section to generate higher-order address information made by compressing a predetermined higher-order bit part from predetermined higher-order and lower-order bit parts included in an instruction address, and a restoring section to restore the higher-order bit part from the higher-order address information. Branch instruction predicting section includes a history memory section that stores the higher-order bit part and the lower-order bit part corresponding to a branch address of a processed branch instruction at either one of a plurality of storing places determined from the higher-order bit part and the lower-order bit part corresponding to a branch address of a processed branch instruction.
Abstract:
The present invention provides an information processing apparatus having a predecoder decoding an operation code in an input instruction, generating conditional branch instruction information indicating that the input instruction is a conditional branch instruction and instruction type information indicating a type of the conditional branch instruction when the input instruction is a conditional branch instruction, and writing the input instruction, from which the operation code is deleted, the conditional branch instruction information and the instruction type information to the instruction cache memory, and a history information writing unit writing history information indicating whether or not the conditional branch instruction was branched, as a result of executing the conditional branch instruction stored in the instruction cache memory, to an area in the instruction cache memory, where the operation code of the conditional branch instruction is deleted.
Abstract:
A data processing apparatus is provided with an execute block instruction EMB which specifies a memory location of a block of program instructions to be executed as well as the length of that block of program instructions. When the end of that block of program instructions has been reached as tracked in response to the specified length value, a return to the main program flow is triggered. The instruction decoder can include a block counter register to keep track of the position within the block of program instructions being called. The block of program instructions are fetched by a prefetch unit into the instruction pipeline following the execute block instruction and are treated as having a program counter value corresponding to the execute block instruction whilst the block counter value keeps track of their separate positions within the block of program instructions.
Abstract:
A data processing system 2 is provided supporting address offset generating instructions which encode bits of an address offset value using previously redundant bits in a legacy instruction encoding whilst maintaining backwards compatibility with that legacy encoding.
Abstract:
A method and apparatus for decompressing relative addresses. A compressed relative address is retrieved from one or more micro-operation entries of a micro-operation storage and an uncompressed relative address is reconstructed from the compressed relative address and an instruction pointer (IP) address associated with the head of the micro-operation storage line in which the compressed relative address was stored. IP-relative addresses may be computed in a manner similar to relative branch targets, then compressed and stored in one or more micro-operation entries of a micro-operation storage line to be reconstructed later according to an IP address associated with the respective micro-operation storage line in which their compressed counterpart was stored.
Abstract:
When a branch instruction is decoded by the instruction decoders 409a-409c, the upper 29 bits of the PC relative value included in the branch instruction are sent to the upper PC calculator 411 and the lower 3 bits are sent to the lower PC calculator 405. The lower PC calculator 405 adds the lower 3 bits of the PC relative value and the lower 3 bits of the present lower PC 404 and sends the result to the lower PC 404 as the updated lower PC. The upper PC calculator 411 adds the upper 29 bits of the PC relative value, the upper 29 bits of the present upper PC 403, and a carry that may be received from the lower PC calculator 405, and sends the result to the upper PC 403 as the updated upper PC.
Abstract:
Herein disclosed is a microcomputer MCU adopting the general purpose register method. The microcomputer is enabled to have a small program capacity or a high program memory using efficiency and a low system cost, while enjoying the advantage of simplification of the instruction decoding as in the RISC machine having a fixed length instruction format of the prior art, by adopting a fixed length instruction format having a power of 2 but a smaller bit number than that of the maximum data word length fed to instruction execution means. And, the control of the coded division is executed by noting the code bits.
Abstract:
A method and system for calculating a branch target address. Upon fetching a branch instruction from memory, the n−1 lower order bits of the branch target address may be pre-calculated and stored in the branch instruction prior to storing the branch instruction in the instruction cache. Upon retrieving the branch instruction from the instruction cache, the upper order bits of the branch target address may be recovered using the sign bit and the carry bit stored in the branch instruction. The sign bit and the carry bit may be used to select one of three possible upper-order bit value combinations of the branch target address. The selected upper-order bit value combination may then be appended to the n−1 lower order bits of the branch target address to form the complete branch target address.