摘要:
Ferritic stainless steel sheet for an exhaust part which has little deterioration in strength even if undergoing long term heat history and is low in cost, excellent in heat resistance and workability characterized by containing, characterized by containing, by mass %, C: less than 0.010%, N: 0.020% or less, Si: over 0.1% to 2.0%, Mn: 2.0% or less, Cr: 12.0 to 25.0%, Cu: over 0.9 to 2%, Ti: 0.05 to 0.3%, Nb: 0.001 to 0.1%, Al: 1.0% or less, and B: 0.0003 to 0.003%, having a Cu/(Ti+Nb) of 5 or more, and having a balance of Fe and unavoidable impurities.
摘要:
The present invention provides a structural body comprising a welded portion of a duplex stainless steel inclusive of an α phase and a Υ phase and an unwelded portion of the duplex stainless steel, wherein an X-ray diffraction intensity for the α phase is higher in a heat affected zone including the welded portion than in the unwelded portion and becomes a local maximum within the heat affected zone. The present invention provides aA production method for a structural body of a duplex stainless steel, wherein a heat affected zone including a welded portion of the structural body is heat-treated between 600° C. and 800° C. while a magnetic field of 1˜10 T is applied to the heat affected zone.
摘要:
Provided is a maraging steel excellent in fatigue characteristics, including, in terms of % by mass: C: ≦0.015%, Ni: from 12.0 to 20.0%, Mo: from 3.0 to 6.0%, Co: from 5.0 to 13.0%, Al: from 0.01 to 0.3%, Ti: from 0.2 to 2.0%, O: ≦0.0020%, N: ≦0.0020%, and Zr: from 0.001 to 0.02%, with the balance being Fe and unavoidable impurities.
摘要:
The present invention manufactures a steel sheet for a rotor core for an IPM motor, wherein the steel sheet has a magnetic flux density B8000 of 1.65 T or more as measured when magnetic field strength is 8000 A/m, and a residual magnetic flux density Br of 0.5 T or more as measured at that time, and optionally, a coercivity Hc of 100 A/m or more as measured after magnetization reaches 8000 A/m. By using the steel sheet manufactured according to the present invention for a rotor core of an IPM motor, it is possible to increase further an output torque in a high-speed rotational range and raise further the maximum rotational speed.
摘要:
This relates to a process for manufacturing a recovery annealed coated steel substrate for packaging applications and a packaging steel product produced thereby.
摘要:
A non-oriented electrical steel sheet with fine magnetic performance, and a calcium treatment method therefor, including an RH (Ruhrstahl-Heraeus) refinement step. The RH refinement step sequentially comprises a decarbonization step, an aluminum deoxidation step, and a step of adding calcium alloy. In the step of adding calcium alloy, time when the calcium alloy is added satisfies the following condition: time interval between Al and Ca/total time after ΣAl=0.2-0.8. In this method, production cost is reduced, the production process is simple, a normal processing cycle of RH refinement is not affected, the device is convenient in operation and is controllable, and foreign substances are controllable in both shape and quantities. The non-oriented electrical steel sheet prepared according to the present invention has fine magnetic performance, and the method can be used for mass production of the non-oriented electrical steel sheet with fine magnetic performance.
摘要翻译:一种具有细磁性能的无取向电工钢板及其钙处理方法,包括RH(Ruhrstahl-Heraeus)精制步骤。 RH精炼步骤依次包括脱碳步骤,铝脱氧步骤和添加钙合金的步骤。 在添加钙合金的步骤中,添加钙合金的时间满足以下条件:Al与Ca之间的时间间隔/ Al = 0.2-0.8之后的总时间。 在这种方法中,生产成本降低,生产工艺简单,RH精加工的正常加工周期不受影响,设备操作方便,可控,异物在形状和数量上都是可控的。 根据本发明制备的无取向电工钢板具有优良的磁性能,并且该方法可用于批量生产具有优良磁性能的无方向性电工钢板。
摘要:
A method produces a high strength electrical steel sheet in which a cumulative rolling reduction ratio in rough rolling is 73.0% or more, in which in a hot band annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after hot band annealing of 100%, and a recrystallized grain size of 80 μm to 300 μm, under a condition where annealing temperature is 850° C. to 1000° C., and annealing duration is 10 seconds to 10 minutes, and in which in a final annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after the final annealing of 30% to 95%, and a length in the rolling direction of a connected non-recrystallized grain group of 2.5 mm or less, under a condition where annealing temperature is 670° C. to 800° C., and annealing duration is 2 seconds to 1 minute.
摘要:
The present invention provides a non-oriented silicon steel with excellent magnetic properties and a manufacturing process therefor. During the manufacturing process of the present invention, the temperature T of the molten steel of steel tapped from a converter during steelmaking and the carbon content [C] and the free oxygen content [O] comply with the following formula: 7.27×103≦[O][C]e(−5000/T)≦2.99×104, and the final annealing step uses tension annealing at a low temperature for a short time. A non-oriented silicon steel with a low iron loss, and excellent anisotropy of iron loss can be obtained by means of the manufacturing process of the present invention.
摘要:
Nitriding process of a steel strip is performed. Next, annealing is performed to form a forsterite based glass coating film at a surface of the steel strip. Heating is performed up to 1000° C. or more in a mixed gas atmosphere containing H2 gas and N2 gas, and a rate of N2 gas is 20 volume % or more, next, the atmosphere is switched into H2 gas atmosphere at the temperature of 1000° C. or more and 1100° C. or less, when the annealing is performed. An oxygen potential P (H2O)/P (H2) is set to be 0.05 to 0.3 when the temperature is 850° C. or less during the heating in the mixed gas atmosphere.
摘要:
On at least one surface of a base metal plate (1) of an α-γ transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.