摘要:
A method for producing a silicon steel normalizing substrate comprises: steelmaking, hot rolling and normalizing steps. The normalizing step uses a normalizing furnace having a nonoxidizing heating furnace section. The nonoxidizing heating furnace section comprises more than 3 furnace zones. An energy investment ratio of the furnace zones used in the nonoxidizing heating furnace section is adjusted, so as to control an excess coefficient α of the nonoxidizing heating furnace section to be within a range of 0.8≦α
摘要:
A manufacture process of non-oriented silicon steel with high magnetic induction includes smelting and casting steel having a chemical composition by weight percent: Si 0.1˜1%, Al 0.005˜1.0%, C≦0.004%, Mn=0.10˜1.50%, P≦0.2%, S≦0.005%, N≦0.002, Nb+V+Ti≦0.006%, and the rest is Fe. The steel is cast into a billet, which is heated and hot-rolled to 1150˜1200° C. into a plate at a finish-rolling temperature 830˜900° C. The plate is cooled to a temperature ≧570° C. and cold-roll flattened at compression ratio 2˜5%. The flattened plate is normalized at temperature not below 950° C. for 30˜180s, and then pickled and cold-rolled into a sheet with thickness of the finished product. The sheet is finish-annealed quickly heating the sheet to 800˜1000° C. at temperature rise rate ≧100° C./s, soaking the heated sheet for 5˜60s at the temperature, and then slowly cooling the sheet to 600˜750° C.
摘要翻译:具有高磁感应性的非取向硅钢的制造方法包括以重量%计的化学组成的熔炼和铸造钢:Si 0.1〜1%,Al 0.005〜1.0%,C n N eE 0.004%,Mn = 0.10〜1.50% Pnn; 0.2%,S&NlE; 0.005%,N& NlE; 0.002,Nb + V + Ti&NlE; 0.006%,其余为Fe。 钢被铸造成坯料,将其在830〜900℃的精轧温度下进行加热并热轧至1150〜1200℃。将板冷却至570℃以上的温度, 冷轧压扁比为2〜5%。 将扁平板在不低于950℃的温度下归一化30至180秒,然后酸洗并冷轧成具有成品厚度的片材。 该片材经过完全退火,将片材快速加热至800〜1000℃,升温速度≥100℃/ s,在加热的温度下浸泡5〜60s,然后缓慢冷却至600〜 750°C
摘要:
A non-oriented electrical steel sheet with fine magnetic performance, and a calcium treatment method therefor, including an RH (Ruhrstahl-Heraeus) refinement step. The RH refinement step sequentially comprises a decarbonization step, an aluminum deoxidation step, and a step of adding calcium alloy. In the step of adding calcium alloy, time when the calcium alloy is added satisfies the following condition: time interval between Al and Ca/total time after ΣAl=0.2-0.8. In this method, production cost is reduced, the production process is simple, a normal processing cycle of RH refinement is not affected, the device is convenient in operation and is controllable, and foreign substances are controllable in both shape and quantities. The non-oriented electrical steel sheet prepared according to the present invention has fine magnetic performance, and the method can be used for mass production of the non-oriented electrical steel sheet with fine magnetic performance.
摘要:
A method for producing a silicon steel normalizing substrate comprises: steelmaking, hot rolling and normalizing steps. The normalizing step uses a normalizing furnace having a nonoxidizing heating furnace section. The nonoxidizing heating furnace section comprises more than 3 furnace zones. An energy investment ratio of the furnace zones used in the nonoxidizing heating furnace section is adjusted, so as to control an excess coefficient α of the nonoxidizing heating furnace section to be within a range of 0.8≦α
摘要:
Disclosed are a non-oriented electrical steel plate with low iron loss and high magnetic conductivity and a manufacturing process therefor. The casting blank of the steel plate comprises the following components: Si: 0.1-2.0 wt %, Al: 0.1-1.0 wt %, Mn: 0.10-1.0 wt %, C: ≦0.005 wt %, P: ≦0.2 wt %, S: ≦0.005 wt %, N: ≦0.005 wt %, the balance being Fe and unavoidable impurities. The magnetic conductivity of the steel plate meets the following relationship formula: μ10+μ13+μ15≧13982−586.5P15/50; μ10+μ13+μ15≧10000, wherein P15/50 is the iron loss at a magnetic induction intensity of 1.5 T at 50 Hz; μ10, μ13, and μ15 are relative magnetic conductivities at induction intensities of 1.0 T, 1.3 T, and 1.5 T at 50 Hz, respectively. The steel plate can be used for manufacturing highly effective and ultra-highly effective electric motors.
摘要:
A manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic property, which comprises the following steps: 1) smelting and casting; chemical compositions of non-oriented silicon steel, by weight percent, are: C≦0.0040%, Si: 0.1˜0.8%, Al: 0.002˜1.0%, Mn: 0.10˜1.50%, P: ≦0.2%, Sb: 0.04˜0.08%, S≦0.0030%, N≦0.0020%, Ti≦0.0020%, and the rest is Fe and unavoidable inclusions; molten steel in accordance with the above compositions is smelted and then casted into billets; 2) hot-rolling and pickling; heating temperature for slab is 1100° C.˜1150° C. and finish-rolling temperature is 860° C.˜920° C.; after rolling, the hot-rolled product is air cooled, during which air cooling time t: (2+30×Sb %)s≦t≦7 s; thereafter reeling at a temperature ≧720° C. ; 3) cold-rolling; rolling to form cold-rolled plate with target thickness at a reduction ratio of 70˜18%; 4) annealing; heating up the cold-rolled plate to 800˜1000° C. at heating rate of ≧15° C./s, and holding time is 10 s˜25 s. Under the precondition to ensure magnetic properties, this invention implements low cost manufacture of high efficiency electric steel by adding elements advantageous to favorable texture during steel making, controlling contents of adverse elements and coordinating air cooling time control during hot-rolling with high temperature reeling.
摘要:
Disclosed are a non-oriented electrical steel plate with low iron loss and high magnetic conductivity and a manufacturing process therefor. The casting blank of the steel plate comprises the following components: Si: 0.1-2.0 wt %, Al: 0.1-1.0 wt %, Mn: 0.10-1.0 wt %, C: ≦0.005 wt %, P: ≦0.2 wt %, S: ≦0.005 wt %, N: ≦0.005 wt %, the balance being Fe and unavoidable impurities. The magnetic conductivity of the steel plate meets the following relationship formula: μ10+μ13+μ15≧13982−586.5P15/50; μ10+μ13+μ15≧10000, wherein P15/50 is the iron loss at a magnetic induction intensity of 1.5 T at 50 Hz; μ10, μ13, and μ15 are relative magnetic conductivities at induction intensities of 1.0 T, 1.3 T, and 1.5 T at 50 Hz, respectively. The steel plate can be used for manufacturing highly effective and ultra-highly effective electric motors.
摘要:
A non-oriented electrical steel sheet with fine magnetic performance, and a calcium treatment method therefor, including an RH (Ruhrstahl-Heraeus) refinement step. The RH refinement step sequentially comprises a decarbonization step, an aluminum deoxidation step, and a step of adding calcium alloy. In the step of adding calcium alloy, time when the calcium alloy is added satisfies the following condition: time interval between Al and Ca/total time after ΣAl=0.2-0.8. In this method, production cost is reduced, the production process is simple, a normal processing cycle of RH refinement is not affected, the device is convenient in operation and is controllable, and foreign substances are controllable in both shape and quantities. The non-oriented electrical steel sheet prepared according to the present invention has fine magnetic performance, and the method can be used for mass production of the non-oriented electrical steel sheet with fine magnetic performance.
摘要翻译:一种具有细磁性能的无取向电工钢板及其钙处理方法,包括RH(Ruhrstahl-Heraeus)精制步骤。 RH精炼步骤依次包括脱碳步骤,铝脱氧步骤和添加钙合金的步骤。 在添加钙合金的步骤中,添加钙合金的时间满足以下条件:Al与Ca之间的时间间隔/ Al = 0.2-0.8之后的总时间。 在这种方法中,生产成本降低,生产工艺简单,RH精加工的正常加工周期不受影响,设备操作方便,可控,异物在形状和数量上都是可控的。 根据本发明制备的无取向电工钢板具有优良的磁性能,并且该方法可用于批量生产具有优良磁性能的无方向性电工钢板。
摘要:
A non-oriented electrical steel has relative high magnetic induction and high intensity without increasing manufacturing difficulty. The weight percentage of the compositions of the electrical steel are as follows: C≦0.0040%, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr is 1.0 to 8.0%, Ni is 0.5 to 5.0%, Mn≦0.50%, P≦0.30%, S≦0.0020%, N≦0.0030%, Ti≦0.0030%, Nb≦0.010%, V≦0.010%, C+S+N+Ti≦0.010%, and a balance substantially being Fe and inevitable impurities.
摘要:
An unoriented silicon steel having high magnetic conductivity and low iron loss at a working magnetic density of 1.0-1.5 T and method for manufacturing same. By proper deoxidation control in a RH refining and high-temperature treatment for a short time in a normalizing step, the method can reduce the amount of inclusions in the silicon steel and improve grain shape, so as to improve the magnetic conductivity and iron loss of the unoriented silicon steel at a magnetic density of 1.0-1.5 T.