Abstract:
A user equipment (UE) device includes a VLC receiver including a photodiode and a radio receiver. The UE device supports a plurality of alternative technologies, communications protocols, and/or frequencies. During a first mode of operation, e.g., a discovery mode, a low reverse bias voltage value is applied to the photodiode. The low reverse bias voltage is adequate to support the recovery of small amounts of communicated information, and the power consumed by the battery of the UE device is relatively low. During discovery, information communicated includes, e.g., a light transmitter ID, an access point ID, services available at the access point, configuration information for a light receiver and/or for an auxiliary radio receiver. During a second mode of operation, e.g., a data traffic mode, the reverse bias voltage applied to the photodiode is set to a high reverse bias voltage to support higher data rate using VLC.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a serving base station. The serving base station receives channel feedback from a plurality of UEs. The channel feedback is based on predetermined phase rotations used by the serving base station. The serving base station selects at least one UE of the UEs for a data transmission based on the received channel feedback. The serving base station maps at least one data stream to a set of resource blocks. The serving base station transmits the set of resource blocks to the at least one UE with a phase rotation determined based on the predetermined phase rotations.
Abstract:
Certain aspects of the present disclosure provide low-density parity-check (LDPC) codes having pairwise orthogonality of adjacent rows, and a new decoder that exploits the pairwise row orthogonality for flexible decoder scheduling without performance loss. An apparatus includes a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver. The apparatus includes at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a LDPC code to produce a set of information bits. The LDPC code is stored in the memory and defined by a base matrix having columns in which all adjacent rows are orthogonal in a last portion of the rows.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for compactly describing lifted low-density parity-check (LDPC) codes. A method by a transmitting device generally includes selecting a first lifting size value and a first set of lifting values; generating a first lifted LDPC code by applying the first set of lifting values to interconnect edges in copies of a parity check matrix (PCM) having a first number of variable nodes and a second number of check nodes; determining a second set of lifting values for generating a second lifted LDPC code for a second lifting size value based on the first lifted PCM and the first set of lifting values; encoding a set of information bits based the first lifted LDPC code or the second lifted LDPC code to produce a code word; and transmitting the code word.
Abstract:
Aspects of the disclosure relate to wireless communication with a waveform configured according to probabilistic constellation shaping in connection with modulation. A wireless transmission device may determine a sequence of amplitude symbols from a sequence of information bits using a distribution matcher (DM) configured for probabilistic amplitude shaping. The device may further apply error correction coding to encode an information block corresponding to at least a portion of the sequence of amplitude symbols. And the device may generate a sequence of output symbols for transmission based on the encoded information block. In various examples, the device may apply interleaving to one or more of the sequence of amplitude symbols, the information block, the encoded information block, or a combination of the sequence of amplitude symbols and the encoded information block, for the generating of the sequence of output symbols. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for optimizing delivery of a transport block (TB) using code rate dependent segmentation.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for compactly describing lifted low-density parity-check (LDPC) codes. A method by a transmitting device generally includes selecting a first lifting size value and a first set of lifting values; generating a first lifted LDPC code by applying the first set of lifting values to interconnect edges in copies of a parity check matrix (PCM) having a first number of variable nodes and a second number of check nodes; determining a second set of lifting values for generating a second lifted LDPC code for a second lifting size value based on the first lifted PCM and the first set of lifting values; encoding a set of information bits based the first lifted LDPC code or the second lifted LDPC code to produce a code word; and transmitting the code word.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for puncturing of structured low-density parity-check (LDPC) codes. Certain aspects of the present disclosure generally relate to methods and apparatus for a high-performance, flexible, and compact LDPC code. Certain aspects can enable LDPC code designs to support large ranges of rates, blocklengths, and granularity, while being capable of fine incremental redundancy hybrid automatic repeat request (IR-HARQ) extension while maintaining good floor performance, a high-level of parallelism to deliver high throughout performance, and a low description complexity.
Abstract:
Methods, systems, and devices are described for wireless communication. A transmitter may receive feedback that a station failed to decode a packet sent over a first channel, and the transmitter may determine to re-send the packet or to send parity bits over the first channel or over a second channel to assist in decoding the failed packet. The first channel may be in an unlicensed radio frequency spectrum, and the second channel may be in a licensed radio frequency spectrum and may have a higher reliability level compared to the first channel. The transmitter may determine a first channel degradation level, which may be based on a signal-to-noise ratio received from the station, and may determine an amount of parity bits to send based on the degradation. The transmitter may determine the reliability level of each channel, which may be based on a channel quality indicator.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for decoding low density parity check (LDPC) codes, and more particularly to a deeply-pipelined layered LDPC decoder architecture for high decoding throughputs. Accordingly, aspects of the present disclosure provide techniques for reducing delays in a processing pipeline by, in some cases, relaxing a dependency between updating bit log likelihood ratios (LLRs) and computing a posteriori LLRs.