Abstract:
The present invention relates to methods for treating restenosis using mesenchymal stem cells, and in particular to treating restenosis following vascular surgery (e.g., angioplasty, stent implantation, rotoblation, atheroectomy, thrombectomy, or grafting).
Abstract:
The invention provides a catheter for insertion into a biological passage which contains a first flowing fluid, the catheter including a tubular member having a proximal end and a distal end; a fluid delivery lumen contained within the tubular member; an inflatable balloon assembly disposed at the distal end of the tubular member, the balloon assembly including an inflatable balloon member having an uninflated state and an inflated state, the balloon assembly including apertures in communication with the fluid delivery lumen; an inflation lumen in communication with the balloon member; and a valve contained within the inflatable balloon assembly. The inflatable balloon is assembly configured such that when the balloon member is in the inflated state: (i) sections of the balloon member contact the biological passage defining at least one containment pocket; (ii) the apertures are disposed in the containment pocket, (iii) a flow lumen is defined through the balloon member to allow the first fluid to flow through the balloon member; and (iv) the valve functions to allow the first flowing fluid to flow through the flow lumen in a physiologic direction, while blocking backflow of the first fluid through the flow lumen.
Abstract:
A medical device for: delivering a therapeutic agent to a body lumen is described. The device may generally be a stent with an inner sidewall surface and an outer sidewall surface, with a plurality of struts having a plurality of openings therein. An inner and outer layer may be applied to the stent, forming pockets within at least a portion of the openings. The pockets may be filled with at least one therapeutic agent. The pockets may take a variety of shapes and sizes, and may be designed for release or rupture in variety of ways.
Abstract:
This invention provides methods of increasing blood flow to tissue in a subject in need thereof, methods of regenerating tissue in a subject, methods of treating diseased tissue in a subject, methods of forming new blood vessels in tissue and new tissue, such as myocardial tissue, in a subject in need thereof, methods of increasing angiogenesis in diseased tissue in a subject, and methods of preventing heart failure in a subject, which methods comprise: a) isolating autologous mononuclear cells from the subject; b) selecting from the isolated autologous mononuclear cells of step (a) lineage negative (Lin−) mononuclear cells; and c) transplanting locally into or adjacent to the tissue an effective amount of the Lin− autologous mononuclear cells, resulting in formation of new blood vessels in the tissue and formation of new tissue. Additional methods provided for such uses further select from the isolated autologous mononuclear cells of step (a) lineage negative (Lin−) mononuclear cells a subset of Lin− mononuclear side population (SP) cells and transplant locally into or adjacent to the tissue an effective amount of the Lin− SP cells. In other aspects, methods using tissue other than mononuclear cells for these uses are provided, which comprise (a) obtaining a cell suspension from the tissue or a second tissue of the subject; (b) selecting from the cell suspension step (a) side population (SP) cells; and (c) transplanting locally into or adjacent to the tissue an effective amount of the SP cells, resulting in formation of new blood vessels in the tissue and formation of new tissue.
Abstract:
The invention provides a catheter for insertion into a biological passage which contains a first flowing fluid, the catheter including a tubular member having a proximal end and a distal end; a fluid delivery lumen contained within the tubular member; an inflatable balloon assembly disposed at the distal end of the tubular member, the balloon assembly including an inflatable balloon member having an uninflated state and an inflated state, the balloon assembly including apertures in communication with the fluid delivery lumen; an inflation lumen in communication with the balloon member; and a valve contained within the inflatable balloon assembly. The inflatable balloon is assembly configured such that when the balloon member is in the inflated state: (i) sections of the balloon member contact the biological passage defining at least one containment pocket; (ii) the apertures are disposed in the containment pocket, (iii) a flow lumen is defined through the balloon member to allow the first fluid to flow through the balloon member; and (iv) the valve functions to allow the first flowing fluid to flow through the flow lumen in a physiologic direction, while blocking backflow of the first fluid through the flow lumen.
Abstract:
An apparatus and method for delivering a viscous liquid therapeutic material fluid through a lumen in a catheter that selectively narrows the lumen at a plurality of axial locations along the lumen.
Abstract:
Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).
Abstract:
The present invention relates generally to systems and methods and systems for generating polymer foams within body cavities to locate and/or control bleeding. The present invention further relates to methods and systems for generating polymer foams within non-compressible wounds to control or stop bleeding. The present invention further relates to the use of foams and gels for medical and cosmetic purposes.
Abstract:
The invention is directed to compositions comprising decellularized bone marrow extracellular matrix and uses thereof. Methods for repairing or regenerating defective, diseased, damaged or ischemic tissues or organs in a subject, preferably a human, using the decellularized bone marrow extracellular matrix of the invention are also provided. The invention is further directed to a medical device, preferably a stent or an artificial heart, and biocompatible materials, preferably a tissue regeneration scaffold, comprising decellularized bone marrow extracellular matrix for implantation into a subject.
Abstract:
Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.