Abstract:
The invention provides a variety of leadframe packages in which signal connections and fixed voltage connections are configured differently to improve the relative performance of the connections relative to their assigned function. The signal connections incorporate one or more configurations of signal lead and corresponding signal bonding wires that tend to reduce the relative capacitance of the signal connectors and thereby improve high speed performance. The fixed voltage connections incorporate configurations of fixed voltage leads and fixed voltage bonding wires that will tend to reduce the inductance of the fixed voltage connector and reduce noise on the fixed voltage connections and improve power delivery characteristics. The configurations of the associated signal and fixed voltage connections will tend to result in signal connections that include signal leads that are shorter, narrower and/or more widely separated from the active surface of the semiconductor chip than the corresponding fixed voltage leads.
Abstract:
Provided are a stack chip and a stack chip package having the stack chip. Internal circuits of two semiconductor chips are electrically connected to each other through an input/output buffer connected to an external connection terminal. The semiconductor chip has chip pads, input/output buffers and internal circuits connected through circuit wirings. The semiconductor chip also has connection pads connected to the circuit wirings connecting the input/output buffers to the internal circuits. The semiconductor chips include a first chip and a second chip. The connection pads of the first chip are electrically connected to the connection pads of the second chip through electrical connection means. Input signals input through the external connection terminals are input to the internal circuits of the first chip or the second chip via the chip pads and the input/output buffers of the first chip, and the connection pads of the first chip and the second chip.
Abstract:
An inline memory module (IMM) architecture may include: a printed circuit board (PCB); a first array of memory devices on a first side of the PCB; a second array of memory devices on a second side of the PCB; at least some of the memory devices of the first array being arranged so as to substantially overlap, relative to a reference axis of the PCB, positional-twin memory devices of the second array, respectively; and multiple vias at least some of which are parts of respective signal paths that connect signal leads of a first memory device in the first array to corresponding signal leads of a second memory device in the second array that is adjacent to a positional-twin third memory device in the second array corresponding to the first memory device.
Abstract:
A semiconductor device package includes a substrate, first and second chip pads spaced apart over a surface of the substrate, and an insulating layer located over the surface of the substrate. The insulating layer includes a stepped upper surface defined by at least a lower reference potential line support surface portion, and an upper signal line support surface portion, where a thickness of the insulating layer at the lower reference potential line support surface portion is less than a thickness of the insulating layer at the upper signal line support surface portion. The package further includes a conductive reference potential line electrically connected to the first chip pad and located on the lower reference potential support surface portion of the insulating layer, a conductive signal line electrically connected to the second chip pad and located on the upper signal line support surface portion, and first and second external terminals electrically connected to the conductive reference potential line and the conductive signal line, respectively.
Abstract:
A semiconductor module may include a printed circuit board that may have a first surface, a second surface, and at least one fixture hole. A semiconductor device may be mounted on the first surface of the printed circuit board. At least one connection terminal may be provided on one of the first surface or the second surface of the printed circuit board that may connect with connection pads of a motherboard. The printed circuit board may be connected to the motherboard through the at least one fixture hole such the connection terminals may be aligned with the connection pad and one of the first surface and second surface of the printed circuit board may face a major surface of the motherboard.
Abstract:
A multilayered circuit substrate and a semiconductor package using the multilayered circuit substrate are provided to increase the number of bonding pads arranged on the circuit substrate without reducing the pitch of the bonding pads, and to further increase the routing feasibility of high speed signals by the use of signal wirings instead of vias. An embodiment may include bonding pads provided on different layers, in which the bonding pads arranged on one layer are staggered with the bonding pad arranged on another layer. Ball lands may be connected to the bonding pads using wirings wherein the bonding pads connected to the signal wirings may be provided on the same layer as the corresponding ball lands.
Abstract:
A multi-chip BGA package has two or more rerouted chips, each of which has one or more electrode plates. The electrode plate is coplanar with rerouting lines on the rerouted chip and may act as a decoupling capacitor, reducing simultaneous switching noise from fluctuations in power voltage, without causing an increase in thickness of the package. Further, each pair of rerouting lines on upper and lower rerouted chips includes two or more interconnection bumps. This reduces inductance and resistance of electric signal propagation. Therefore, the multi-chip BGA package of this invention can realize small, thin, high-speed and high-density memory devices.
Abstract:
An inline memory module (IMM) architecture may include: a printed circuit board (PCB); a first array of memory devices on a first side of the PCB; a second array of memory devices on a second side of the PCB; at least some of the memory devices of the first array being arranged so as to substantially overlap, relative to a reference axis of the PCB, positional-twin memory devices of the second array, respectively; and multiple vias at least some of which are parts of respective signal paths that connect signal leads of a first memory device in the first array to corresponding signal leads of a second memory device in the second array that is adjacent to a positional-twin third memory device in the second array corresponding to the first memory device.
Abstract:
A semiconductor package module having no solder balls and a method of manufacturing the semiconductor package module are provided. The semiconductor package module includes a module board on which a plurality of semiconductor devices are able to be mounted, a semiconductor package bonded on the module board using an adhesive, being wire-bondable to the module board, and having already undergone an electrical final test, second wires electrically connecting second bond pads of the semiconductor package to bond pads of the module board; and a third sealing resin enclosing the second wires and the semiconductor package. Because the semiconductor package module does not use solder balls, degradation of solder joint reliability (SJR) can be prevented. Further, the use of a semiconductor package that has already undergone an electrical test can reduce degradation of the yield of a completed semiconductor package module.
Abstract:
A multi-chip BGA package has two or more rerouted chips, each of which has one or more electrode plates. The electrode plate is coplanar with rerouting lines on the rerouted chip and may act as a decoupling capacitor, reducing simultaneous switching noise from fluctuations in power voltage, without causing an increase in thickness of the package. Further, each pair of rerouting lines on upper and lower rerouted chips includes two or more interconnection bumps. This reduces inductance and resistance of electric signal propagation. Therefore, the multi-chip BGA package of this invention can realize small, thin, high-speed and high-density memory devices.