Abstract:
An intermediate construction of an integrated circuit includes a semiconductive substrate and a raised mandril over the substrate. The raised mandril may be raised out from the substrate and have at least one edge substantially perpendicular to the substrate and at least one beveled edge. A layer of structural material may form an edge defined feature on the at least one perpendicular edge.
Abstract:
A power semiconductor switching device comprises a mounting board (110) on which a reverse bias driving circuit (20) for applying a reverse bias between the control electrode and one of two main electrodes of a GTO element (11) housed in a flat package is contained. The mounting board (110) has a through hole through which the main electrode of the GTO element (11) penetrates so that the flat package is located in the proximity of the through hole and the perimeter of the through hole partially surrounds the flat package, and a conducting member formed on one surface of the mounting board (110) and electrically connected to the control electrode of the GTO element (11).
Abstract:
A semiconductor device comprises a semiconductor substrate including a first conductivity type first semiconductor layer and a second conductivity type second semiconductor layer formed on the first semiconductor layer. A unit cell for controlling current flowing between a source electrode and a drain electrode is formed in the semiconductor substrate. A trench is formed in a peripheral region of the unit cell to form mesa structure. A field relaxing layer is formed between an insulating film on a side face of the second trench and both the first semiconductor layer and the second semiconductor layer in order to relax concentration of an electric field in the insulating film.
Abstract:
The present invention intends to form multilayer interconnects without deteriorating the advantage of an organosiloxane film (an interlayer dielectric), i.e., the low dielectric constant. According to the present invention, an organosiloxane film, a silicon nitride film, an inorganic SOG film, and a photoresist pattern are formed on a first metal layer, in series. The inorganic SOG film is then etched with use of the photoresist pattern as a mask to transfer the photoresist pattern to the inorganic SOG film. The photoresist pattern is then removed by oxygen plasma treatment with use of the silicon nitride film as a protection mask for protecting the organosiloxane film. Subsequently thereto, the silicon nitride film and the organosiloxane film are etched with use of the inorganic SOG film to form a contact hole reaching the first metal layer. After removing the inorganic SOG film, a second metal layer is formed to contact with the first metal layer through the contact hole.
Abstract:
A simple and low cost ULSI integrated heatsink more efficiently removes heat from a silicon package by integrating the heat sink material into the silicon die, transforming the present two-dimensional art into three dimensions. The fabrication of a high power integrated ULSI package and heatsink begins by fabricating an integrated circuit wafer up to the point of dicing the wafer into individual chips. The front side of the wafer is protected, while the backside of the wafer is exposed. The exposed backside is roughened by chemical and/or mechanical process. Optionally, a gettering process is then performed to remove impurities. The roughened backside is then coated with metal interlayers, preferably aluminum (Al) by chromium (Cr). A layer of copper (Cu) is optionally coated on the metal interlayers. A highly conductive reflowable material, such as solder or gold eutectic, is deposited on the metal interlayers. At this point, the wafer is diced to form chips. The heatsink itself is prepared by first optionally roughening the surface and metalizing the backside of the heatsink with metal interlayer. Next, the chip is thermally attached to the heatsink by reflowing the thermally conductive reflowable material.
Abstract:
A 4-T SRAM cell in which two layers of permanent SOG (with an intermediate oxide layer) are used to provide planarization between the first and topmost poly layers.
Abstract:
A passivation structure is formed using two passivation layers and a protective overcoat layer using two masking steps. The first passivation layer is formed over the wafer and openings are provided to expose portions of the pads for testing the device and fusible links. After testing and laser repair, a second passivation layer is formed over the wafer followed a deposit of the protective overcoat. The protective overcoat is patterned and etched, exposing the pads. The remaining portions of the protective overcoat are used as a mask to remove portions of the second passivation layer overlying the pads. Leads are then attached to pads and the devices are encapsulated for packaging.
Abstract:
A resin molded type semiconductor device has a metallic guard ring that is formed to cover the peripheral edge of the surface of a tetragonal semiconductor substrate. In order to prevent a passivation film on the guard ring from being cracked by stresses due to a resin mold package concentrating in the four corners of the semiconductor substrate, slits or rows of small holes are formed in the corner portions of the guard ring.
Abstract:
A poly-silicon or amorphous silicon plate having cone-like protrusions is provided on a Si substrate in a tunnel window area such that the edges of the protrusions are placed very close to a floating gate. Alternatively, the top surface of a Si substrate is shaped into protrusions.