Abstract:
A BPSK demodulator circuit comprises: a sideband-separating and lower sideband signal-delaying unit which separates a modulated signal into a lower sideband and an upper sideband by a primary low pass filter and a primary high pass filter having a cut-off frequency as a carrier frequency, and which outputs an upper sideband analog signal and an analog signal delayed by ¼ of a cycle of the carrier frequency from a lower sideband analog signal; a data demodulating unit which demodulates digital data by means of latching, through a hysteresis circuit, an analog pulse signal appearing in accordance with the phase change part of a signal generated by the sum of the analog signals; and a data clock restoring unit which generates a data clock by using a data signal and a signal having the delayed lower sideband analog signal digitized through a comparator.
Abstract:
The present invention relates to a device and a method for detecting a transmission signal in a wireless communication system, and a reception device in a wireless communication system comprises: a transceiver for receiving a signal from a transmitting end; a first correlator for performing a first correlation and outputting a real part among the results of the first correlation; a second correlator for performing a second correlation and outputting an imaginary part among the results of the second correlation; and a control unit for controlling the first correlator and the second correlator on the basis of a channel change rate so as to detect a transmission signal.
Abstract:
In one aspect, a method for estimating residual carrier frequency offset (CFO) in a phase-modulated wireless signal having pseudo noise (PN) spreading is provided. The method includes receiving, at a digital transceiver, a plurality of PN spread blocks of in-phase and quadrature (I/Q) samples of the phase-modulated wireless signal and performing sample-level de-rotation, symbol-level de-spreading, and sign alignment. The method also includes estimating a phase difference and determining an estimated residual CFO based on the phase difference.
Abstract:
Systems and methods for autonomous signal modulation format identification are disclosed. In an example embodiment of the disclosed technology, a method includes applying higher-order statistics to an input signal to identify the input signal's modulation format. The method may include applying higher-order statistics to the input signal to calculate higher-order cumulant values for the input signal as higher-order cumulants are indicative of a particular modulation format signature. The method may further include employing a decision tree to determine the modulation format of the input signal.
Abstract:
A quadrature demodulator not requiring analog mixers. The demodulation is made using a first integrator and a second integrator which are controlled by square logic signals at twice the frequency of the carrier, the received signal being alternatively integrated by the first integrator and the second integrator over periods of time equal to a quarter period of time of the carrier frequency. The samples of the first and second integrators are sampled and subtracted from each other. The successive samples are combined in a first and a second combining module for providing in-phase and quadrature component samples. This demodulator can further be provided with a synchronization module IQ and a symbol synchronization module.
Abstract:
A Bluetooth Low Energy (BLE) device, having a demodulator configured to translate in-phase and quadrature components of a received BLE signal into a differential phase signal; an estimator configured to estimate a frequency offset of the differential phase signal; and a detector configured to detect information in the differential phase signal corrected by the estimated frequency offset.
Abstract:
A method and device for transmitting a preamble sequence is disclosed. A transmitter according to an embodiment may extract a first sequence for a non-coherent receiver and a second sequence for a coherent receiver, from ternary preamble sequences including elements −1, 0 and 1, and map the first sequence and the second sequence to a preamble including a plurality of bits to generate a third sequence that the non-coherent receiver and coherent receiver support.
Abstract:
A method is disclosed for detecting packet at a receiving system in a Multi-Carrier Modulation (MCM) system. The method starts with receiving a signal at the receiving system. Then during the plurality of symbol durations, a set of phases of the signal for each symbol duration is obtained, where each phase is a phase of a carrier of the number of carriers. Then a set of phase variances for each carrier of the number of carriers is obtained, where each phase variance is a difference of phases of a carrier in different symbol durations. Then a phase variance value based on the set of phase variances is computed and it is compared with a threshold to determine whether a packet has been detected from the received signal.
Abstract:
A voice signal processing apparatus and a voice signal processing method are provided. Calculate a value of an interpolation parametric function corresponding to a sampling signal frame according to three consecutive sample values in the sampling signal frame, and calculate an interpolated value between two adjacent sampling points in a frequency-lowered signal frame according to the value of the interpolation parametric function.
Abstract:
Proposed is a method of deriving differentially decoded data values from a received differentially encoded phase modulated optical signal. The method uses an estimation algorithm in order to find derive a sequence of differentially decoded data values. The algorithm stipulates transition probabilities between hypothetical first states, representing differentially encoded data symbols assuming that no phase slip has occurred, and transition probabilities towards hypothetical second states, which represent differentially encoded data symbols assuming that a phase slip has occurred. The transition probabilities between the first and second states are weighted on the basis of a predetermined phase slip probability value.