Abstract:
A hybrid powertrain system includes an electric motor/generator unit having a multiphase asynchronous AC machine electrically connected to a multiphase bridge inverter. A high-voltage capacitor is electrically connected between positive and negative sides of a high-voltage DC power bus. High-voltage DC bus pre-charge circuits are electrically connected between gate drive bias power supplies and the multiphase bridge inverter. A low-voltage battery electrically charges the high-voltage DC link capacitor via the gate drive bias power supplies and the high-voltage DC bus pre-charge circuits when the high-voltage energy storage system is disconnected from the high-voltage DC power bus.
Abstract:
Each of a first and a second inverter circuit supplies a driving current to an electric motor in a different power supply line. A custom IC has a first pre-driver circuit for outputting control signals to the first inverter circuit and a second pre-driver circuit for outputting control signals to the second inverter circuit. A micro-computer for outputting operation signals to the first and second pre-driver circuits is mounted to a control board on a center line. A distance between the center line and the first inverter circuit and a distance between the center line and the second inverter circuit is equal to each other. First and second output terminals of the micro-computer as well as first and second input and output terminals of the custom IC are symmetric with respect to the center line.
Abstract:
A power supply apparatus for a vehicle includes first and second batteries provided electrically in parallel to main loads, a boost converter provided between the first battery and the main loads, a boost converter provided between the second battery and the main loads, an auxiliary battery, a DC/DC converter, and an auxiliary load driven by power from the auxiliary battery or DC/DC converter. The controller determines charging currents or discharging currents for the batteries reflecting variations in a current flowing through the auxiliary load. Accordingly, a power supply apparatus for a vehicle can thus be provided in which imbalance between charging/discharging currents for a plurality of power storage devices is reduced.
Abstract translation:一种用于车辆的电源装置,包括与主负载并联设置的第一和第二电池,设置在第一电池和主负载之间的升压转换器,设置在第二电池和主负载之间的升压转换器,辅助电池, DC / DC转换器,以及由辅助电池或DC / DC转换器供电驱动的辅助负载。 控制器确定反映电流流过辅助负载的电流的电池的充电电流或放电电流。 因此,可以提供一种用于车辆的电源装置,其中减少了用于多个蓄电装置的充电/放电电流之间的不平衡。
Abstract:
There is provided a control device which controls a transformer in accordance with a total loss imposed on a load driving system including the transformer and a load. In a control device of a transformer that boosts or drops an output voltage of a DC power supply and provides the output voltage to a load, the control device includes: a switching controller which performs switching control of the transformer; a load power deriving unit which derives load power; a transformer loss decrease amount deriving unit which derives a decrease amount of loss generated in the transformer, based on the load power derived by the load power deriving unit and a transformer ratio of the transformer, when the switching controller performs intermittent control of the transformer; a load loss increase amount deriving unit which derives an increase amount of loss generated in the load when the switching controller performs the intermittent control of the transformer; and a control command unit which instructs the switching controller to perform the intermittent control of the transformer when the decrease amount of transformer loss derived by the transformer loss decrease amount deriving unit is larger than the increase amount of load loss derived by the load loss increase amount deriving unit.
Abstract:
A method for operating a drive unit for an electric motor, wherein the drive unit has a drive circuit for driving the electric motor and an intermediate circuit, which is connected upstream of the drive circuit, in particular having an intermediate circuit capacitor. The method includes supplying an actuating variable for driving the electric motor. The method further includes adjusting a variable input voltage and supplying the adjusted input voltage to the drive unit via the intermediate circuit. In addition, the method includes operating the drive circuit as a function of an available intermediate circuit voltage, which is dependent on the adjusted input voltage, and as a function of the actuating variable in order to drive the electric motor in accordance with the actuating variable.
Abstract:
A vehicle includes a converter for stepping up power provided from a power storage device, and an inverter for converting the power output from converter and outputting it to an alternating-current motor for driving the vehicle. In the vehicle, a rectangular voltage control unit controls the inverter by means of rectangular wave voltage control that is based on a torque command value and the like, so as to control an output torque of the alternating-current motor. A system voltage control unit controls a system voltage, which is an output voltage of the converter. The system voltage control unit lifts a restriction on a system voltage command value based on an accelerator pedal position and the like, and then increases it. When increasing the system voltage command value during the rectangular wave voltage control for the inverter, a cooperative control unit increases the system voltage command value and the torque command value in a cooperative manner.
Abstract:
A power supply apparatus for a vehicle includes first and second batteries provided electrically in parallel to main loads, a boost converter provided between the first battery and the main loads, a boost converter provided between the second battery and the main loads, an auxiliary battery, a DC/DC converter, and an auxiliary load driven by power from the auxiliary battery or DC/DC converter. The controller determines charging currents or discharging currents for the batteries reflecting variations in a current flowing through the auxiliary load. Accordingly, a power supply apparatus for a vehicle can thus be provided in which imbalance between charging/discharging currents for a plurality of power storage devices is reduced.
Abstract translation:一种用于车辆的电源装置,包括与主负载并联设置的第一和第二电池,设置在第一电池和主负载之间的升压转换器,设置在第二电池和主负载之间的升压转换器,辅助电池, DC / DC转换器,以及由辅助电池或DC / DC转换器供电驱动的辅助负载。 控制器确定反映电流流过辅助负载的电流的电池的充电电流或放电电流。 因此,可以提供一种用于车辆的电源装置,其中减少了用于多个蓄电装置的充电/放电电流之间的不平衡。
Abstract:
An ECU activates a shutdown permission signal and provides it to an AND gate when a shutdown signal is inactive. Thus, when an abnormality sensing device does not sense an abnormality, the ECU always keeps the shutdown permission signal active. The AND gate performs logical AND between a signal provided from the abnormality sensing device and the shutdown permission signal to provide the shutdown signal to inverters. When a limp-home run permission signal becomes active while the shutdown signal is active, the ECU inactivates the shutdown permission signal.
Abstract:
An active filter for reducing the common mode current in a pulse width modulated drive circuit driving a load, said drive circuit comprising an a-c source, a rectifier connected to said a-c source and producing a rectified output voltage connected to a positive d-c bus and a negative d-c bus, a PWM inverter having input terminals coupled to said positive d-c bus and negative d-c bus and having a controlled a-c output, a load driven by said a-c output of said PWM inverter, a ground wire extending from said load, and a current sensor for measuring the common mode current in said drive circuit, said current sensor producing an output current related to said common mode current; said active filter comprising a first and second transistor, each having first and second main electrodes and a control electrode, and an amplifier circuit driving said transistors; said first electrode of said first and second transistor coupled to a common node, said second electrodes of said first and second transistors being coupled to said positive d-c bus and said negative d-c respectively; said amplifier circuit having an input coupled to said output of said current sensor and having an output connected to said control electrodes; and a d-c isolating capacitor connecting said common node of said first electrode of said first and second transistors to said ground wire; and wherein said current sensor is a current transformer having a primary winding connected in series with said ground wire and a secondary winding connected as the signal input to the amplifier circuit.
Abstract:
An active filter for reducing the common mode current in a pulse width modulated drive circuit driving a load said drive circuit comprising an a-c source, a rectifier connected to said a-c source and producing a rectified output voltage connected to a positive d-c bus and a negative d-c bus, a PWM inverter having input terminals coupled to said positive d-c bus and negative d-c bus and having a controlled a-c output, a load driven by said a-c output of said PWM inverter, a ground wire extending from said load, and a current sensor for measuring the common mode current in said drive circuit, said current sensor producing an output current related to said common mode current; said active filter comprising a first and second transistor, each having first and second main electrodes and a control electrode, and an amplifier circuit driving said transistors; said first electrode of said first and second transistor coupled to a common node, said second electrodes of said first and second transistors being coupled to said positive d-c bus and said negative d-c respectively; said amplifier circuit having an input coupled to said output of said current sensor and having an output connected to said control electrodes; and a d-c isolating capacitor connecting said common node of said first electrode of said first and second transistors to said ground wire; and wherein said current sensor is a current transformer having a primary winding connected in series with said ground wire and a secondary winding connected as the signal input to the amplifier circuit.