Abstract:
An active filter reduces the common mode current in the ground wire of a PWM controlled motor drive circuit. The active filter is, in part, integrated into an integrated circuit chip and contains a buffer amplifier which drives two junction type or MOSFET transistors linearly to divert common mode current from a ground wire and through the transistors. The transistors are connected between positive and negative d-c busses which supply d-c power to a PWM inventor which drives an a-c motor, producing the common mode ground current in its grounded frame. A current transformer monitors the common mode current and its output is coupled to the input of the buffer amplifier to control the transistors. An internal power supply for the amplifiers is formed at the nodes between two current sources and two zener diodes which are connected between the d-c bus conductors. Headroom control circuits are disclosed to insure sufficient headroom voltage for each of the transistors under all input a-c voltage conditions.
Abstract:
A buck regulator circuit provides a low voltage, e.g., about 15 V, power source, directly from a variable high-voltage dc bus voltage that varies from 250 V to about 450 V. A monolithic gate driver circuit is used to drive the switching device, e.g., a MOSgate transistor, which delivers the high voltage dc to the load output node via a charging inductor for controlled time periods. The control principle for controlling the on and off times of the transistor (with the monolithic gate driver circuit) relies on turning on the transistor for fixed time periods that are equal to the intrinsic delay of the gate driver circuit. In contrast, the off period of the switching device is varied to regulate and maintain the output voltage at a constant value, independent of the input dc bus voltage or of the output current.
Abstract:
A high power DC blocking device is provided which blocks DC current, passes AC current, and limits the voltage across it under fault conditions. A DC blocking capacitor is used to block the flow of DC current, while allowing the passage of normal AC currents. A main bypass path includes switching devices which provide a low impedance path across the capacitor under fault conditions. Auxiliary switching devices are used to connect a storage capacitor across the device at the initiation of a fault, thereby charging the storage capacitor to a stored voltage level before the main switching devices are fired. After the fault passes, the auxiliary switching devices are fired once again to apply the stored voltage in the storage capacitor to the main switching devices to commutate them off. The storage capacitor and auxiliary switching devices also form part of a voltage clamp circuit which dissipates inductive energy stored in a system to which the DC blocking device is connected. Multiple backup firing circuits are provided which activate the low impedance bypass path in the event of failure of the main firing circuits or of the blocking device control system. The effectiveness of the DC blocking device is continuously monitored using a DC current sensing circuit which is capable of distinguishing small DC currents in the presence of large AC currents.
Abstract:
A switching power supply is disclosed using a single transistor circuit which provides a constant output voltage for a range of input voltages extending from a nominal 115 volt power supply to a nominal 220/240 volt power supply without requiring a change in the circuit configuration throughout the range of input voltages. The circuit is disclosed in connection with a single transistor forward converter circuit, in which the transformer winding of the converter circuit is provided with a uni-directional clamp to prevent the transformer voltage of a given polarity from exceeding the clamping voltage magnitude. By clamping one polarity of the transformer voltage which is in series with the switching transistor, the maximum peak-to-peak voltage on the transistor is reduced from that which would be produced in the absence of clamping and enables the use of a power MOSFET transistor for the circuit. The clamping circuit is disclosed as a zener clamp and as a circuit including a parallel resistor and capacitor and series diode.
Abstract:
An active filter for reducing the common mode current in a pulse width modulated drive circuit driving a load said drive circuit comprising an a-c source, a rectifier connected to said a-c source and producing a rectified output voltage connected to a positive d-c bus and a negative d-c bus, a PWM inverter having input terminals coupled to said positive d-c bus and negative d-c bus and having a controlled a-c output, a load driven by said a-c output of said PWM inverter, a ground wire extending from said load, and a current sensor for measuring the common mode current in said drive circuit, said current sensor producing an output current related to said common mode current; said active filter comprising a first and second transistor, each having first and second main electrodes and a control electrode, and an amplifier circuit driving said transistors; said first electrode of said first and second transistor coupled to a common node, said second electrodes of said first and second transistors being coupled to said positive d-c bus and said negative d-c respectively; said amplifier circuit having an input coupled to said output of said current sensor and having an output connected to said control electrodes; and a d-c isolating capacitor connecting said common node of said first electrode of said first and second transistors to said ground wire; and wherein said current sensor is a current transformer having a primary winding connected in series with said ground wire and a secondary winding connected as the signal input to the amplifier circuit.
Abstract:
An active filter for reducing the common mode current in a pulse width modulated drive circuit driving a load, said drive circuit comprising an a-c source, a rectifier connected to said a-c source and producing a rectified output voltage connected to a positive d-c bus and a negative d-c bus, a PWM inverter having input terminals coupled to said positive d-c bus and negative d-c bus and having a controlled a-c output, a load driven by said a-c output of said PWM inverter, a ground wire extending from said load, and a current sensor for measuring the common mode current in said drive circuit in said ground wire, said current sensor producing an output current related to said common mode current, said active filter comprising a first and second MOSFET transistor, each having first and second main electrodes and a control electrode, and an amplifier driving a respective one of the transistors; said first electrode of said first and second transistor coupled to a common node, said second electrodes of said first and second transistors being coupled to said positive d-c bus and said negative d-c respectively; each of said amplifiers having an input coupled to said output of said current sensor and each having an output connected to a respective one of said control electrodes; and a d-c isolating capacitor connecting said common node of said first electrode of said first and second transistors to said ground wire.
Abstract:
An isolator surge protector (ISP) is provided which blocks DC current and passes AC current and AC and DC fault currents. The ISP includes a main bypass path, including main bypass path switching devices, that is connected in parallel with a DC blocking capacitor. Primary triggering of the main bypass path switching devices occurs when the voltage across the ISP exceeds a primary voltage trigger level. Repeated triggering of the bypass path switching devices, and high current discharge of the high voltage DC blocking capacitor through the bypass path, under abnormal steady state voltage conditions, is prevented by initiating a secondary triggering period following primary triggering of the bypass path switching devices. During the extended secondary triggering period, triggering of the bypass path switching devices occurs at a low secondary voltage trigger level. Primary triggering of the bypass path switching devices preferably also occurs when the AC current in the DC blocking capacitor exceeds a selected primary current trigger level, thereby protecting the DC blocking capacitor from damage due to excessive currents. Primary triggering due to high AC current levels in the DC blocking capacitor is also followed by a secondary triggering period during which triggering of the bypass path SCRs occurs at the low secondary voltage trigger level. The ISP preferably also provides a warning indication when primary triggering of the bypass path switching devices occurs.
Abstract:
A power module contains IGBT die along with integrated circuit driver chips and opto isolators or isolation transformers within the same module housing. Output terminals are provided which can be interfaced directly to control logic or microprocessors for operating the module. The IGBTs may have current-sensing electrodes to simplify current measurement and control functions.
Abstract:
An active filter for reducing the common mode current in a pulse width modulated drive circuit driving a load, said drive circuit comprising an a-c source, a rectifier connected to said a-c source and producing a rectified output voltage connected to a positive d-c bus and a negative d-c bus, a PWM inverter having input terminals coupled to said positive d-c bus and negative d-c bus and having a controlled a-c output, a load driven by said a-c output of said PWM inverter, a ground wire extending from said load, and a current sensor for measuring the common mode current in said drive circuit, said current sensor producing an output current related to said common mode current; said active filter comprising a first and second transistor, each having first and second main electrodes and a control electrode, and an amplifier circuit driving said transistors; said first electrode of said first and second transistor coupled to a common node, said second electrodes of said first and second transistors being coupled to said positive d-c bus and said negative d-c respectively; said amplifier circuit having an input coupled to said output of said current sensor and having an output connected to said control electrodes; and a d-c isolating capacitor connecting said common node of said first electrode of said first and second transistors to said ground wire; and wherein said current sensor is a current transformer having a primary winding connected in series with said ground wire and a secondary winding connected as the signal input to the amplifier circuit.
Abstract:
A combined filter inductor and Hall current sensor for a double inverter motor drive is formed on a unitary magnetic core. The magnetic core has a suitable winding and air gap to comprise an inductor. The Hall effect sensor is situated in the airgap to detect a Hall effect voltage created by the magnetic flux in the air gap.