摘要:
A MOSFET which is a semiconductor device capable of achieving a stable reverse breakdown voltage and reduced on-resistance includes a SiC wafer of an n conductivity type, a plurality of p bodies of a p conductivity type formed to include a first main surface of the SiC wafer, and n+ source regions of the n conductivity type formed in regions surrounded by the plurality of p bodies, respectively, when viewed two-dimensionally. Each of the p bodies has a circular shape when viewed two-dimensionally, and each of the n+ source regions is arranged concentrically with each of the p bodies and has a circular shape when viewed two-dimensionally. Each of the plurality of p bodies is arranged to be positioned at a vertex of a regular hexagon when viewed two-dimensionally.
摘要:
Disclosed are a semiconductor device and a method for producing a semiconductor device. A MOSFET may have a source region, a drift region and a drain region of a first conductivity type, a body region of a second conductivity type disposed between the source region and the drift region, and a gate electrode disposed adjacent to said body region. The gate electrode may be isolated from the body region by a dielectric, and have a source electrode contacting the source region and the body region. A self-locking JFET, associated with the MOSFET, may have a channel region of the first conductivity type, the channel region connected between the source electrode and the drift region, and coupled to and adjacent the body region.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
摘要:
Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of
摘要:
A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.
摘要:
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.
摘要:
A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure further includes a III-nitride epitaxial layer of the first conductivity type coupled to the first surface of the III-nitride substrate, a first metallic structure electrically coupled to the second surface of the III-nitride substrate, and a III-nitride epitaxial structure of a second conductivity type coupled to the III-nitride epitaxial layer. The III-nitride epitaxial structure comprises at least one edge termination structure.
摘要:
A MOSFET capable of achieving decrease in the number of steps in a manufacturing process and improvement in integration includes an SiC wafer composed of silicon carbide and a source contact electrode arranged in contact with the SiC wafer and containing titanium, aluminum, silicon, and carbon as well as a remaining inevitable impurity. The SiC wafer includes an n+ source region having an n conductivity type and a p+ region having a p conductivity type. Both of the n+ source region and the p+ region are in contact with the source contact electrode. The source contact electrode contains aluminum and titanium in a region including an interface with the SiC wafer.
摘要翻译:能够实现制造工序中的台阶数减少和集成化的改善的MOSFET包括由碳化硅构成的SiC晶片和与SiC晶片接触并且包含钛,铝,硅和碳的源极接触电极, 以及剩下的不可避免的杂质。 SiC晶片包括具有n导电类型的n +源区和具有p导电类型的p +区。 n +源极区域和p +区域都与源极接触电极接触。 源极接触电极在包括与SiC晶片的界面的区域中包含铝和钛。
摘要:
Embodiments relate to an ultra-low-power, high-voltage integrated circuit (IC) that also has high electromagnetic compatibility (EMC). Embodiments address the desire for an ultra-low-power, high-voltage IC that also has high EMC and comprise a high-voltage EMC protection circuit with normal current consumption coupled to an ultra-low-power, low-voltage oscillator that controls a sleep/wake, or duty, cycle of a high-voltage circuit.
摘要:
A semiconductor device includes a III-nitride substrate having a first conductivity type and a first electrode electrically coupled to the III-nitride substrate. The semiconductor device also includes a III-nitride material having a second conductivity type coupled to the III-nitride substrate at a regrowth interface and a p-n junction disposed between the III-nitride substrate and the regrowth interface.