Abstract:
The present invention is directed towards methods for measuring and assaying PAS Kinase activity. The methods are useful, for example, for detecting PASK activity in a cell, and for screening for small molecule regulators of PAS kinase activity, as well as characterizing endogenous factors and stimuli that modulate PAS kinase activity, and identifying and optimizing the activity of potential PAS kinase inhibitors.
Abstract:
A method of detecting biomolecules present in a complex biological sample includes a) separating the biological sample into fractions according to at least one physical property of the biomolecules; and b) specifically detecting biomolecules present in the fractions using at least one solid-phase-based, immunological detection method including immobilizing the biomolecules from the individual fractions on microsphere populations specific for each fraction and distinguishable from one another.
Abstract:
This invention provides a capture/detection antibody-based method for measuring the amount of a high density lipoprotein (HDL) subpopulation present in a sample, wherein each particle of the HDL subpopulation being measured is characterized by the presence of a plurality of defined protein epitopes. This invention also provides related analytical and diagnostic methods, as well as kits for performing same.
Abstract:
Methods to assay kinase activity are provided herein. The methods employ elemental analysis, including inductively charged plasma mass spectrometry (ICP-MS). The methods allow for the convenient and accurate analysis of post-translation modifications of substrates by kinase enzymes involved in post-translational modifications.
Abstract:
An apparatus for glycan analysis is disclosed. The apparatus includes a plurality of loading wells adapted to receive a plurality of samples; a plurality of capillaries arranged in correspondence with the loading wells, each of the capillaries including a first portion including a stacking gel and a second portion including a resolving gel; and a plurality of eluting wells arranged in correspondence with the capillaries and adapted to receive a portion of the samples having traversed the capillaries.
Abstract:
Methods detecting covalent lysine modifications in DNA polymerases are provided. These methods are particularly useful in determining the extent and location of a lysine modification in a DNA polymerase.
Abstract:
The present teachings provide for identification of peptides using small sequence tags to focus computational resources on searching regions of a protein database that are the most likely to yield correct identifications. They allow for the incorporation of modifications and in doing so focuses the search to peptides with a precursor mass match. Additionally, probability or relevance factors can be used to determine peptide hypotheses. Various embodiments are presented that search for peptides when a single precursor is selected or when multiple precursors are simultaneously fragmented.
Abstract:
The invention provides methods for isolating a modified peptide from a complex mixture of peptides, the method comprising the steps of: (a) obtaining a proteinaceous preparation from an organism, wherein the preparation comprises modified peptides from two or more different proteins; (b) contacting the preparation with at least one immobilized modification-specific antibody; and (c) isolating at least one modified peptide specifically bound by the immobilized modification-specific antibody in step (b). The method may further comprise the step of (d) characterizing the modified peptide isolated in step (c) by mass spectrometry (MS), tandem mass spectrometry (MS-MS), and/or MS3 analysis, or the step of (e) utilizing a search program to substantially match the spectra obtained for the modified peptide during the characterization of step (d) with the spectra for a known peptide sequence, thereby identifying the parent protein(s) of the modified peptide. Also provided are an immunoaffinity isolation device comprising a modification-specific antibody, and antibodies against novel UFD1 and PTN6 phosphorylation sites.
Abstract:
This invention pertains to methods, kits and/or compositions for the determination of analytes by mass analysis using unique labeling reagents or sets of unique labeling reagents. The labeling reagents can be isomeric or isobaric and can be used to produce mixtures suitable for multiplex analysis of the labeled analytes.