Abstract:
An electric vehicle includes an in-wheel motor drive system. The in-wheel motor drive system includes a wheel bearing unit rotatably supporting a drive wheel, a motor unit, and a reducer unit. The electric vehicle also includes a disturbance observer that determines an estimate of external force influence on the drive wheel. The electric vehicle further includes a slip level-responsive corrector. The slip level-responsive corrector may use the estimate of external force influence, calculate a correction value that may correspond to slip level of the drive wheel, and correct an accelerator signal to the motor unit with the correction value to produce a motor torque command value.
Abstract:
A combination brake pedal and an accelerator pedal assembly allowing the vehicle to be driven with both feet comprising a brake and an accelerator, the accelerator being operatively connected to an engine control lever that moves between an engaged and a disengaged position, when the accelerator is pressed the engine control lever moves to the engaged position to accelerate the vehicle, when the accelerator is not pressed the engine control lever moves to the disengaged position so the vehicle does not accelerate; and an accelerator pedal disengagement device operatively connected to the brake and accelerator for moving the engine control lever to the disengaged position when the brake pedal is pushed, wherein the accelerator pedal disengagement device prevents the accelerator pedal from causing the engine control lever to move to the engaged position when both the accelerator pedal and brake pedal are pressed.
Abstract:
The intermittence prohibition vehicle speed Vpr is set to the smallest of the standard intermittence prohibition vehicle speed Vpr1 set according to the input limit Win of the battery, the sequential intermittence prohibition vehicle speed Vpr2 set for the sequential gearshift position, and the power mode intermittence prohibition vehicle speed Vpr3 set for the power mode (S400 to S480). When the vehicle speed V is less than the intermittence prohibition vehicle speed Vpr, the hybrid vehicle is driven with output of the torque demand Tr* to the driveshaft within the range of the input limit Win or the output limit Wout of the battery with intermittent operation of the engine. When the vehicle speed V is more than or equal to the intermittence prohibition vehicle speed Vpr, the hybrid vehicle is driven with output of the torque demand Tr* to the driveshaft within the range of the input limit Win or the output limit Wout of the battery in prohibition of the intermittent operation of the engine.
Abstract:
One of the two accelerator sensors 165a and 165b is detected faulty by analyzing variation patterns outputted by the two sensors even when the outputs of two sensors remain within their respective normal output ranges. An accelerator control input is determined using the output of the fault-free sensor if a faulty sensor is detected. The fault detector detects the faulty sensor by analyzing variation patterns of outputs of the first and second accelerator sensors when the outputs of the first and second accelerator sensors remain within respective normal output ranges thereof.
Abstract:
In a vehicle, it is determined whether a driver has requested increased driving force based on an accelerator opening degree. If the driver has requested increased driving force, a vehicle speed at the time of the request for increased driving force is derived. Three-dimensional map which corresponds to different vehicle speed and which shows a predetermined relationship of the accelerator opening degree (Acc), the vehicle speed and a required torque are then used to set the required torque. The maps are set such that the required torque increases with respect to the accelerator opening degree when the vehicle speed is low. Further, the maps are set such that when the vehicle speed is high, (i) even if the accelerator opening degree changes a little, the required driving force does not change a large amount, and (ii) the required driving force remains substantially constant when the vehicle speed is in a high speed region. By adopting this configuration, the driver's request is closely correlated with the vehicle speed at the time of the request for increased driving force, and thus the vehicle can be driven with a driving force that accords with the driver's request.
Abstract:
Engine driving characteristics are achieved for driving a hydraulic system during non-traveling and traveling in an electrically driven dump truck.When a shift lever 16 is located at a neutral position, the target revolution speed Nr1 corresponding to the operation amount (p) of an accelerator pedal 1 is calculated on the basis of first target revolution speed characteristics (Nr1(p)) which are suitable for driving of a hydraulic pump for working so that an electronic governor 4a is controlled on the basis of this target revolution speed. When the shift lever 16 is located at a forward position, the target revolution speed Nr2 corresponding to the operation amount of the accelerator pedal 1 is calculated on the basis of second target revolution speed characteristics (Nr2(p)) which are suitable for driving of electric motors 12R, 12L so that the electronic governor 4a is controlled on the basis of this target revolution speed.
Abstract:
An ECU executes a program including: steps of detecting an SOC and a temperature TB of a traction battery; when an EV switch is on, a step of calculating a temperature correction coefficient α from TB; when EV switch not on, a step of calculating a temperature correction coefficient α from TB; steps of calculating an EV traveling allowed power value WOUT based on the SOC and the temperature correction coefficients; and a step of transmitting EV traveling allowed power value WOUT to a meter ECU in order to indicate EV traveling allowed power value WOUT on a power meter.
Abstract:
A boosting converter and a boosting control unit are mounted on a vehicle. A failure diagnosis unit makes a failure diagnosis of an atmospheric pressure sensor based on a detection result of the atmospheric pressure sensor and on a detection result of an intake pressure sensor detecting engine intake pressure that changes in accordance with a change in the atmospheric pressure. Boosting control unit controls an output voltage of the boosting converter based on the detection result of atmospheric pressure sensor and the detection result of intake pressure sensor.
Abstract:
In a vehicle, it is determined whether a driver has requested increased driving force based on an accelerator opening degree. If the driver has requested increased driving force, a vehicle speed at the time of the request for increased driving force is derived. Three-dimensional map which corresponds to different vehicle speed and which shows a predetermined relationship of the accelerator opening degree (Acc), the vehicle speed and a required torque are then used to set the required torque. The maps are set such that the required torque increases with respect to the accelerator opening degree when the vehicle speed is low. Further, the maps are set such that when the vehicle speed is high, (i) even if the accelerator opening degree changes a little, the required driving force does not change a large amount, and (ii) the required driving force remains substantially constant when the vehicle speed is in a high speed region. By adopting this configuration, the driver's request is closely correlated with the vehicle speed at the time of the request for increased driving force, and thus the vehicle can be driven with a driving force that accords with the driver's request.
Abstract:
In a hybrid vehicle equipped with an engine and a motor that are connected to a driveshaft linked to an axle via a gear mechanism, on condition that a torque demand Tr* required for the driveshaft is lower than a preset reference torque level Tref (step S220) and that a vehicle speed V is lower than a preset reference speed level Vref (step S230), the drive control of the invention idles the engine (step S240) regardless of a stop request of the engine (steps S120 and S210). This arrangement effectively reduces the potential for backlash or gear rattle in the gear mechanism. On condition that the vehicle speed V is not lower than the preset reference speed level Vref (step S220), on the other hand, the drive control of the invention stops the operation of the engine (step S250) in response to the stop request of the engine (steps S120 and S210) even under the torque demand Tr* of lower than the preset reference torque level Tref (step S230). This arrangement desirably enhances the energy efficiency of the hybrid vehicle.