Abstract:
A method for monitoring a patient with a robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A machine for performing machining operations on a work-piece is disclosed that includes a carriage with a robotic arm mounted thereon. The arm includes a movable head containing a tool for performing the machining operations on the work-piece. A laser position determination system is included for determining the actual spatial relationship position the carriage and the work-piece and providing a first signal representative thereof and further determining the spatial relationship of the head to the work-piece during actual machining operations on the work-piece and providing a second signal representative thereof. A computer having a computer program provides a third signal to the robotic arm for machining the work-piece based on a predetermined spatial relationship between the carriage and the work-piece and for receiving the first and second signals and adjusting the third signal based on the actual spatial relationship between the carriage and the work-piece and the head and the work-piece.
Abstract:
In a method for mobile robot motion control for the sake of controlling motional characteristics of the mobile robot, such motional characteristics of mobile robot are made to be virtually equivalent motional characteristics of a caster, whereby motional performance adaptable to an external force is realized. Thus, a method for mobile robot motion control by which an object can be cooperatively manipulated by human being and mobile robot is provided.
Abstract:
A self-propelled robot platform consists of a frame with a plurality of casters to support the frame on and space the frame from a supporting surface, as well as permitting any selected direction of movement over the support surface. At least two linear motors are arranged on the frame transversely to one another and generally parallel to the support surface and so that their flux links the support surface. The support surface is preferably a conductor such that by a combination of signals to the respective motor means, the motor fluxes linking the supporting surface will drive the platform. The platform is provided with tool support means and that tool support means includes articulation structure with associated drive means which permits tool positioning. As a consequence, the robot platform may be moved over the surface in a predetermined pattern doing work with a supported tool or it may be moved from point to point where work is to be done where the tool is actuated either manually or by programmed information. If the support surface is magnetic, the surface need not be horizontal to hold the platform.A system for driving the platform includes input means for selecting platform movement and tool operation, which may include both manual and computer control. The input means, in turn, drives control means to select the appropriate linear motor means at a given time and sequence to achieve desired movement. Control means selects the motors to be energized by a power source. A means is also provided to drive the respective drive means of the articulation structure to produce desired tool movement. Both platform and tool position sensing signals are preferably fed back to the drive means to correct their drive signals.
Abstract:
A service robot and a method for providing a delivery service thereof are provided. The service robot includes a camera, a light detection and ranging (LiDAR) sensor, a driving device including a robotic arm, a processor, and storage. The processor: obtains an image by capturing the outside of the service robot; detects a target vehicle from the image; compares an image of the detected target vehicle with the reference vehicle image; recognizes a type of the target vehicle; recognizes vehicle information; recognizes a distance from the target vehicle; compares the LiDAR data with the vehicle information; recognizes at least one relative direction of the target vehicle; determines a target position and a path; controls the service robot to move to the target position along the path; and controls the service robot to deliver the delivery product to the target vehicle.
Abstract:
A control system includes one or more processors configured to perform system control for controlling a system including a mobile robot configured to move autonomously and transport a transport object. The mobile robot includes a contact portion which comes into contact with a transport box configured to store the transport object when loading and transporting the transport box, and a first light-emitting unit provided around the contact portion and configured to emit light in a predetermined light emission pattern associated with a state of the mobile robot. The transport box includes a box-side light-emitting unit which is a light-emitting unit provided on the transport box. The system control includes control on the box-side light-emitting unit to emit light in a light emission pattern corresponding to the predetermined light emission pattern of the first light-emitting unit when the transport box is loaded on the contact portion.
Abstract:
A method and system for capturing, by a camera a sequence of frames at respective locations within a portion of an environment; capturing, by an inertial measurement unit, a sequence of inertial odometry data corresponding to the sequence of frames at the respective locations; storing in a queue a data record includes information extracted from processing the respective frame and information from the inertial measurement unit; in accordance with a determination that the sequence of inertial odometry data satisfies a first criterion: calculating a first relative pose between the first frame and the second frame; and in accordance with a determination that a difference between the first relative pose and the information extracted from processing the respective frame satisfy a first threshold: generating an initial map of the portion of the environment based on the first data record and the second data record.
Abstract:
A system that can travel and rotate and is designed in the manner of an at least one-armed robot is used for handling spacer frames in the course of the production of insulating glass. The system grasps a spacer frame with a gripper system provided to rotate at the free end of the robot arm. A spacer frame is moved by the system to stations of a line for producing insulating glass. For example, a spacer frame is held in a station for producing spacer frames, moved to a station for filling the spacer frame, when the spacer frame is to be filled with hygroscopic material, then further moved to a station, in which the lateral surfaces of the spacer frame are coated with sealing and adhesive agents, and finally moved to a station for assembling insulating glass, in which the spacer frame is mounted on a glass panel.
Abstract:
Described is a method of controlling movement of a mobile robot in the event of a localization failure. The method comprises, on an occurrence of the localization failure, receiving an image from an image sensor of the mobile robot. The method includes splitting received image into at least two vertical portions and determining if one of said at least two vertical portions is indicative of a passable path. The method includes controlling the mobile robot to travel along the passable path indicated by a selected one of said at least two vertical portions.