Abstract:
A method for generating a physical layer (PHY) data unit includes generating a first signal field to include multiple copies of first signal field content, wherein the first signal field content spans one sub-band of a plurality of sub-bands of the PHY data unit, and wherein the multiple copies collectively span the plurality of sub-bands of the PHY data unit; generating a second signal field to include multiple copies of second signal field content, wherein the second signal field content spans multiple ones of the plurality of sub-bands of the PHY data unit, and wherein the multiple copies of the second signal field collectively span the plurality of sub-bands of the PHY data unit; generating a preamble of the PHY data unit to include at least the first signal field and the second signal field; generating the PHY data unit to include at least the preamble.
Abstract:
Some embodiments described herein provide a method for transmitting a preamble in accordance with a wireless local area network communication protocol. In some embodiments, a data frame may be obtained for transmission including a preamble compliant with the wireless local area network communication protocol. It may be determined that the preamble includes a first preamble portion that spans multiple symbol durations and a second preamble portion that spans a single symbol duration. The first preamble portion via beamforming may be transmitted based on a first beamforming matrix. When a transmission mode of the second preamble portion is beamforming, a second beamforming matrix may be generated based on the first beamforming matrix, each tone for the second preamble portion may be calculated based on the second beamforming matrix. Each calculated tone may be transmitted in accordance with the wireless local area network communication protocol.
Abstract:
Embodiments described herein provide a method for cross-channel scheduling of high efficiency (HE) multi-user (MU) frame transmission. In some embodiments, channel information and client station information may be obtained for data transmission. An MU frame containing a data field of a first type and two data fields of a second type may be configured to carry scheduling information relating to one or more channels for the data transmission. It may be determined that a current scheduling setting of the two data fields of the second type leads to unbalanced payload between the one or more channels. The two data fields of the second type may then be adjusted for a balanced channel mapping, and the data field of the first type may be adjusted to reflect the balanced channel mapping. Data based on the adjusted data field of the first type and the adjusted two data fields of the second type may be transmitted via the one or more channels.
Abstract:
The present disclosure describes systems and techniques relating to wireless communications by devices that employ more than one wireless communication technology. According to an aspect of the described systems and techniques, a device includes: a first radio configured to communicate wirelessly with a first station in accordance with a first wireless communication technology, a second radio configured to communicate wirelessly with a second station in accordance with a second wireless communication technology, a controller configured to (i) terminate scheduled portions of time for sending communications from the first radio to the first station in favor of receiving communications from the second station to the second radio and (ii) restrict which of all available scheduled portions of time for sending communications from the first radio to the first station are provided for termination based on information about types of data transmitted in respective ones of the available scheduled portions of time.
Abstract:
The present disclosure includes systems and techniques relating to interference measurement pilot tones in communication systems. In some implementations, a method includes identifying, by a transmitting device, a pilot pattern for transmission in a plurality of orthogonal frequency-division multiplexing (OFDM) symbols over a wireless local area network (WLAN) channel, the pilot pattern including an interference measurement pilot tone, wherein the interference measurement pilot tone is located at a specified frequency and time location in the plurality of OFDM symbols, the interference measurement pilot tone including a null tone that facilitates a receiving device to measure interference; and transmitting, by the transmitting device, the pilot pattern in the plurality of OFDM symbols over the WLAN channel. The pilot pattern can further include a regular, nonzero pilot tone that facilitates the receiving device to measure a frequency drift or a phase noise.
Abstract:
A system including a direct current tone, guard tone, data tone allocation, mapping, and inverse Fourier transform (IFT) modules. The direct current tone module determines a number of direct current tones based on whether a network device is operating in a single user or multi-user mode. The guard tone module determines a number of guard tones based on whether the network device is operating in the single user or multi-user mode. The data tone allocation module determines a number of data tones based on the number of direct current and guard tones. The mapping module receives data and based on the number of data tones, maps the data to the data tones. The IFT module performs a frequency to time domain conversion of an output of the mapping module to generate orthogonal frequency division multiplexing (OFDM) symbols during the single user mode and OFDM access symbols during the multi-user mode.
Abstract:
An high efficiency wireless local area network access point including a channel access module and a scheduling module. The channel access module accesses a channel of an unlicensed frequency band, which includes a plurality of subchannels. The scheduling module generates a schedule for a plurality of high efficiency wireless local area network client stations to transmit data to the access point via the channel of the unlicensed frequency band. The schedule includes information for the plurality of client stations regarding (i) a time slot in which to access the channel without contention to transmit data to the access point via the channel, (ii) a subchannel of the plurality of subchannels to use during the time slot to transmit data to the access point, and (iii) one or more spatial streams to use on the subchannel and during the time slot to transmit data to the access point.
Abstract:
Systems and methods are provided for determining a decoding order in a successive interference cancellation receiver. The method includes receiving, using control circuitry, a plurality of codewords. The method further includes computing at least one ordering metric for at least one of the plurality of codewords based on posterior information associated with the plurality of codewords, and determining the decoding order based on the at least one ordering metric.
Abstract:
Systems and methods for suppressing interference from a data signal received at a receiving device, where the receiving device has two or more receive antennas, are provided. Characteristics of a channel are estimated, the channel being a channel through which the data signal was transmitted by a transmitting device to the receiving device. A spatial correlation of interference and noise received at the two or more receive antennas of the receiving device is determined based on the estimated characteristics of the channel. The spatial correlation indicates how the interference and noise received at a particular one of the receive antennas is related to the interference and noise received at another one of the receive antennas. The spatial correlation of the interference and noise is used to suppress interference and noise from the data signal received at the receiving device.
Abstract:
Systems and methods are provided for determining a decoding order in a successive interference cancellation receiver. The method includes receiving, using control circuitry, a plurality of codewords. The method further includes computing at least one ordering metric for at least one of the plurality of codewords based on posterior information associated with the plurality of codewords, and determining the decoding order based on the at least one ordering metric.