Abstract:
A carrier tray includes a top plate and a first sidewall. The top plate includes a first side edge and a containing room. The first sidewall is connected to the top plate and is extended from the first side edge. The containing room and the first sidewall are disposed on the same side of the top plate. The first sidewall and the top plate form a first included angle of between 73 and 78 degrees therebetween.
Abstract:
A liquid crystal (LC) lens includes a first substrate, a second substrate, and a plurality of liquid crystal units disposed between the first substrate and the second substrate. Each liquid crystal unit includes a first sub-unit having a first electrode and a second electrode disposed on the first substrate with a first interval therebetween and a third electrode and a fourth electrode disposed on the second substrate with a second interval therebetween. A first voltage difference is applied between the first electrode and the third electrode, and a second voltage difference is applied between the second electrode and the fourth electrode. The polarity of the first voltage difference is contrary to that of the second voltage difference, and the first interval is not equal to the second interval. A 3D display including the LC lens and a display panel is also provided.
Abstract:
A photo sensor type touch panel includes a plurality of readout lines electrically connected in parallel. The overall capacitance of a coupling capacitor between the readout lines connected in parallel and adjacent data lines having one type of polarity is equal to the overall capacitance of a coupling capacitor between the readout lines connected in parallel and adjacent data lines having the other type of polarity.
Abstract:
A light emitting diode (LED) display panel and fabrication method thereof are provided. The LED display panel includes a plurality of dielectric patterns and LED devices, and the dielectric patterns are formed on a substrate subsequent to formation of the LED devices. The dielectric pattern surrounds sidewalls of the corresponding LED device, and exposes an electrode of the LED device. The upper surface of the dielectric pattern and the electrode of the LED device are located at the same level approximately, and a connection electrode is disposed on the dielectric pattern, and electrically connected to the electrode of the LED device and a signal line.
Abstract:
A touch panel includes a substrate, a transparent sensor electrode pattern, a patterned compensation electrode, a passivation layer, a transparent shielding electrode and at least one connection structure. The substrate has a surface and includes a sensor region and a peripheral region. The transparent sensor electrode pattern is disposed on the surface of the substrate and in the sensor region. The patterned compensation electrode is disposed on the surface of the substrate and in the peripheral region, and the patterned compensation electrode and the transparent sensor electrode pattern are electrically isolated. The passivation layer is disposed on the surface of the substrate, covers the transparent sensor electrode pattern, and at least partially exposes the patterned compensation electrode. The transparent shielding electrode is disposed on the passivation layer. The connection structure is electrically connected to the transparent shielding electrode and the patterned compensation electrode exposed by the passivation layer.
Abstract:
An organic light emitting diode (OLED) display device includes a plurality of OLED pixels, a gate driver, a source driver, and a voltage controller. Each of the OLED pixels includes a current control switch and an OLED. A first end of the current control switch is coupled to a first voltage source. A first end of the OLED is coupled to a second end of the current control switch, and a second end of the OLED is coupled to a second voltage source. The gate driver is configured to output scan signals to sequentially turn on the plurality of OLED pixels. The source driver is configured to output display voltages to the plurality of OLED pixels. The voltage controller is configured to adjust a voltage difference between the first voltage source and the second voltage source according to a maximum grey level value of display data of a frame.
Abstract:
A method of forming TFT is provided. The TFT includes a gate electrode, a gate insulating layer, a first protective pattern, a second protective pattern, a source electrode, a drain electrode, a semiconductor channel layer, and a passivation layer. The first protective pattern and the second protective pattern are disposed on the gate insulating layer above the gate electrode. The source electrode is disposed on the gate insulating layer and the first protective pattern. The drain electrode is disposed on the gate insulating layer and the second protective pattern. The semiconductor channel layer is disposed on the gate insulating layer, the source electrode, and the drain electrode. In an extending direction from the source electrode to the drain electrode, a length of the first protective pattern is shorter than that of the source electrode, and a length of the second protective pattern is shorter than that of the drain electrode.
Abstract:
A display is provided. The display includes a frame, a display module, and a bendable cover. The frame includes a bottom surface and a lateral surface, the display module is disposed on the frame, and the bendable cover has a surface layer and an adhesive layer, the adhesive layer is located on the surface layer, a part of the surface layer is adhered to the display module through the adhesive layer, another part of the surface layer is attached to the lateral surface of the frame and adhered to the bottom surface of the frame through the adhesive layer.
Abstract:
A shift register circuit includes plural stages of shift registers. Each stage of shift register includes a pull-up circuit, a first driving circuit and a voltage-stabilizing circuit. The pull-up circuit is used for charging a first node. The first driving circuit is electrically connected with the first node. According to a voltage level of the first node, a corresponding control signal is outputted from an output terminal of the first driving circuit. The voltage-stabilizing circuit is electrically connected with the output terminal of the first driving circuit for stabilizing the control signal from the first driving circuit. Some circuits of some other shift registers are controlled according to the control signal.
Abstract:
A method of forming a photo sensor includes the following steps. A substrate is provided, and a first electrode is formed on the substrate. A first silicon-rich dielectric layer is formed on the first electrode for sensing an infrared ray, wherein the first silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second silicon-rich dielectric layer is formed on the first silicon-rich dielectric layer for sensing visible light beams, wherein the second silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second electrode is formed on the second silicon-rich dielectric layer.