Abstract:
A three-dimensional interaction display includes a display panel having a plurality of light sensing devices, a first light emitting device, a second light emitting device, and a processing circuit. The first light emitting device includes a first light emitting surface including a first pattern, and the first pattern includes a first shape boundary having a first total length. The second light emitting device includes a second light emitting surface including a second pattern, and the second pattern includes a second shape boundary having a second total length. The processing circuit is electrically connected to the plurality of light sensing devices for processing an image obtained by the light sensing devices, calculating the total length of the shape boundary of each of the patterns shown in the obtained image, and determining the corresponding light emitting device according to the total length of the shape boundary of each of the patterns.
Abstract:
An optical touch panel includes a light source unit and a processing unit, wherein the processing unit is for executing a brightness control method. The brightness control method includes steps below. The light source unit emits at a first intensity in a touch control mode. Responding to a switching condition, the touch panel is switched into a scan mode, and the light source unit emits at a second intensity in the scan mode.
Abstract:
An optical touch panel includes a light source unit and a processing unit, wherein the processing unit is for executing a brightness control method. The brightness control method includes steps below. The light source unit emits at a first intensity in a touch control mode. Responding to a switching condition, the touch panel is switched into a scan mode, and the light source unit emits at a second intensity in the scan mode.
Abstract:
A light sensing device includes a substrate, a control unit and a light sensing unit. The control unit and the light sensing unit are disposed on the substrate. The control unit includes a gate electrode, a gate insulation layer, an oxide semiconductor pattern, a source electrode and a drain electrode. The gate insulation layer is disposed on the gate electrode, and the oxide semiconductor pattern is disposed on the gate insulation layer. The light sensing unit includes a bottom electrode, a light sensing diode and a top electrode. The light sensing diode is disposed on the bottom electrode, and the top electrode is disposed on the light sensing diode. The gate insulation layer partially covers the top electrode, and the gate insulation layer has a first opening partially exposing the bottom electrode. The drain electrode is electrically connected to the bottom electrode via the first opening.
Abstract:
A light emitting diode (LED) display panel and fabrication method thereof are provided. The LED display panel includes a plurality of dielectric patterns and LED devices, and the dielectric patterns are formed on a substrate subsequent to formation of the LED devices. The dielectric pattern surrounds sidewalls of the corresponding LED device, and exposes an electrode of the LED device. The upper surface of the dielectric pattern and the electrode of the LED device are located at the same level approximately, and a connection electrode is disposed on the dielectric pattern, and electrically connected to the electrode of the LED device and a signal line.