Abstract:
Exemplary embodiments of the present invention relate to a low-power highly-accurate passive multiphase clock generation scheme by using polyphase filters. An exemplary embodiment of the present invention may be low power phase-rotator-based 25 GB/s CDR architecture in case that half-rate reference clock is provided. It may be suitable for multi-lane scheme and incorporate phase interpolator with improved phase accuracy to make Nyquist-sampling clock phase. To improve the phase accuracy, poly phase filter may be used for converting 4-phase to 8-phase and interpolate adjacent 45 degree different phases. The linearity of phase rotator may be improved by proposed harmonic rejection poly phase filter (HRPPF) using the characteristic of notch filter response.
Abstract translation:本发明的示例性实施例涉及通过使用多相滤波器的低功率高精度无源多相时钟生成方案。 在提供半速率参考时钟的情况下,本发明的示例性实施例可以是基于低功率相位旋转器的25GB / s CDR架构。 它可能适用于多通道方案,并且并入具有提高的相位精度的相位内插器,以使奈奎斯特采样时钟相位。 为了提高相位精度,多相滤波器可用于将4相转换为8相,并内插相邻的45度相位。 通过使用陷波滤波器响应的特性,提出的谐波抑制多相滤波器(HRPPF)可以改善相位旋转器的线性度。
Abstract:
A slot antenna and an information terminal apparatus using the same are provided. The slot antenna comprises: a conductive housing; and at least one slot formed on the corner and edge of the conductive housing.
Abstract:
Disclosed herein are a printed circuit board and a method for manufacturing the same. The printed circuit board including an adhesive promoter interposed between an insulating layer and a circuit layer on a substrate in order to improve adhesion therebetween; and a first metal layer formed between the adhesive promoter and the circuit layer has high adhesion between an insulating layer such as a resin and a circuit while having low roughness by including a polymer adhesive promoter, easily forms a fine circuit and has low signal transmission loss due to low roughness, and has high reliability due to the high adhesion.
Abstract:
There is provided a phase shift full bridge (PSFB) type power supply device controlling a switching on time of lagging leg switches according to a load state. The power supply device includes a power supply unit supplying preset DC power by switching input power using a full bridge by a phase shift method; and a control unit controlling a switching time of a switch of the full bridge according to a load state in which the DC power is received from the power supply unit.
Abstract:
A receiving apparatus in a wireless communication system includes: an antenna configured to receive a wireless frequency signal including a first frequency band signal and a second frequency band signal; a low noise amplifier (LNA) configured to amplify the wireless frequency signal, output the first frequency band signal as a differential phase signal, and output the second frequency band signal as a common phase signal; a differentiator configured to pass only the differential phase signal between the signals outputted from the LNA; and a combiner configured to pass only the common phase signal between the signals outputted from the LNA.
Abstract:
The present invention includes determining a motion vector candidate set of a current block, obtaining motion vector indication information of a current block from a video signal, extracting the motion vector candidate corresponding to the motion vector indication information from the motion vector candidate set, determining a predicted motion vector of the current block based on the extracted motion vector candidate, deriving a motion vector of the current block based on the predicted motion vector and a motion vector difference of the current block, and performing motion compensation on the current block based on the derived motion vector.
Abstract:
A method and apparatus for splitting signals received via a plurality of antennas. A signal split apparatus of the present disclosure includes a first antenna which receives a first input signal, a second antenna which receives a second input signal, a first phase shifter which shifts phase by applying a first modulation frequency to the first input signal, a second phase shifter which shifts phase by applying a second modulation frequency to the second input signal, a summer which sums the phase-shifted first and second input signals, and an analog-digital converter which converts the summed signal to a digital signal, wherein the first and second modulation frequencies are different from each other. The signal split apparatus and method of the present disclosure is capable of splitting signals efficiently.
Abstract:
A data transmission and reception method and apparatus in a Multiple-Input Multiple-Output (MIMO) system. The transmission method includes selecting at least one antenna for use in transmission among a plurality of antennas based on transmission data and transmitting the transmission data through the selected antenna. The data transmission and reception method and apparatus are advantageous in increasing the throughput of the MIMO communication system. Also, the data transmission and reception method and apparatus are capable of making it possible to design a superior transceiver in complexity and performance. Also, the data transmission and reception method and apparatus are capable of acquiring extra Degree of Freedom (DOF) and thus increasing the number of symbols that can be transmitted at a time. Furthermore, the data transmission and reception method and apparatus are applicable to conventional MIMO communication systems to obtain extra performance gain without being restricted to certain conditions.
Abstract:
There are provided a method and an apparatus for generating a depth map of a stereoscopic image that are capable of representing the depth perception of an image more finely by considering not only vanishing points but also fine lines formed within an image. The method includes: generating multiple line segments by grouping multiple edge pixels within an input image based on an intensity gradient direction; merging the multiple line segments based on similarity and thereafter detecting at least one vanishing point in consideration of a result of the merging; and generating an energy depth function on which correlation between the line segments and the vanishing point is reflected and generating a depth map by decoding the energy depth function.
Abstract:
A method of analyzing protein-protein interactions includes binding the first proteins to the substrate where the first proteins are tagged with the first markers which bind specifically to the biomolecules immobilized on the substrate or the first proteins bind specifically to the biomolecules immobilized on the substrate; incubating the substrate bound first proteins with cell lysate containing the second proteins which are tagged with second markers; analyzing the interactions between the first proteins and the second proteins in the cell lysate, and obtaining the first analytic value representing the kinetic picture of the interactions; incubating the substrate bound first proteins with cell lysate mixture of a cell lysate consisting of the second markers-tagged second proteins and another cell lysate comprising other proteins including unlabelled second proteins and obtaining the second analytic value; comparing and analyzing the first and the second analytic values.