Abstract:
The invention relates to a vibration isolation system, comprising at least one fluid bearing having a first control device in order to control the fluid pressure and having at least one actuator in order to compensate for position changes of the load to be isolated, which actuator is controlled by at least one second control device, wherein the input of one control device is connected to the output of the other control device.
Abstract:
To regenerate a compressed air supply device of a commercial vehicle, a first compressed air circuit is supplied with compressed air until reaches a predetermined target pressure value; then a second compressed air circuit is supplied. Between these steps, the method: (1) regenerates an air dryer when the pressure in the first compressed air circuit has reached the target pressure value, and when a moisture value of the air dryer exceeds a predetermined target moisture value; (2) terminates the regeneration when the pressure has dropped to a predetermined limit pressure value or the moisture value of the air dryer has reached or dropped below the target moisture value; (3) supplies the first compressed air circuit until it has reached the predetermined target pressure value; and (4) repeats the preceding intermediate steps when the moisture value is greater than the target moisture value.
Abstract:
The present invention provides a method and a device for dewatering a hydraulic fluid of a hydraulic system, in particular in the aerospace sector, comprising a container which has a sorbent, a feed which supplies the hydraulic fluid from the hydraulic system to the container for the hydraulic fluid to be passed through the sorbent such that it can be dewatered in a dewatering mode of the device, and a return which returns the dewatered hydraulic fluid from the container to the hydraulic system in the dewatering mode of the device. The hydraulic fluid can be dewatered continuously and very efficiently by the method and the device according to the invention.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A pressure-compensated accumulator bottle is provided. In one embodiment, the accumulator bottle includes a housing and an interior wall that generally define first, second, and third chambers within the housing. In this embodiment, a spring is disposed in the second chamber and configured to apply a biasing force on a first piston disposed within the first chamber. Further, in this embodiment, an additional piston is disposed within the third chamber and is configured to facilitate balancing of the pressure of a fluid disposed in the second chamber with the pressure of the external environment such that the magnitude of a second biasing force applied on the first piston by the pressure of the fluid depends at least in part on the pressure of the external environment. Hydraulic circuits and systems including a pressure-compensated accumulator bottle are also disclosed.
Abstract:
A pump torque control system is capable of preventing hunting due to interference between speed sensing control and control of an engine speed of a prime mover when the temperature of a hydraulic fluid is low.A maximum absorption torque is set in a regulator 31 that controls displacement volumes of hydraulic pumps 2 and 3 based on a deviation between target and actual engine speeds of a prime mover 1. A second modification factor calculating section 45 and a control gain modifying section 49, which are included in a controller 23 that performs speed sensing control to ensure that the maximum absorption torque of the hydraulic pumps 2 and 3 is reduced, change a control gain of the speed sensing control based on a value detected by the hydraulic temperature sensor 34 to ensure that the control gain is reduced as the temperature of the hydraulic fluid is reduced.
Abstract:
The compressor is provided with an oil separator for separating oil from refrigerant gas introduced into a separation chamber, an annular space for reserving oil separated from the refrigerant gas, and a reservoir chamber for reserving the thus separated oil. The oil separator is provided in a cylindrical hole formed in a discharge chamber from which the refrigerant gas is discharged and a lid for partitioning the cylindrical hole from the discharge chamber is provided in the cylindrical hole. The oil separator introduces the refrigerant gas from the discharge chamber to the separation chamber via the introduction passage. The annular space is provided around the lid and connected to the reservoir chamber via an oil passage. The reservoir chamber is connected to a crank chamber of a pressure lower than that in the discharge chamber.
Abstract:
A female screw hole (31) is opened in an outer surface of a housing (3) of a hydraulic clamp (1), and a leg portion (40a) of a tubular casing (40) is threaded into the female screw hole (31). An annular gasket (41) is fitted to an annular groove (42) formed in a head portion (40b) of the casing (40). On an inner peripheral surface (41a) of the gasket (41), a first annular sealing portion (71) which seals an inner peripheral surface (42a) of the annular groove (42) is provided. On an annular outer end surface (41d) of the gasket (41), a second annular sealing portion (72) which seals a peripheral wall (68) of the female screw hole (31) at the opening part of the housing (3) is provided. A diameter (D1) of the first annular sealing portion (71) is set to a value smaller than a diameter (D2) of the second annular sealing portion (72).
Abstract:
The compressor of the present invention has a structure in which a groove is disposed on a sealing surface of at least one of the head and the valve plate. The structure enhances contact pressure on a pressed surface, providing the gasket with preferable sealing strength. Besides, the head of the compressor has no protrusion on the edge. This eliminates worry about breakage of the head, providing high reliability and productivity.
Abstract:
Actuator assemblies comprise an actuator element and two piezoelectric assemblies, with the two piezoelectric assemblies being configured and arranged for controlling movement of the actuator element. In some example implementations, the first piezoelectric assembly and the second piezoelectric assembly are constructed and arranged so that a temperature dependency of the first piezoelectric assembly is cancelled by the temperature dependency of the second piezoelectric assembly. In a first example embodiment, a first piezoelectric assembly comprises a first or main piezoelectric diaphragm connected to the actuator element for displacing the actuator element in response to displacement of the first piezoelectric diaphragm. The first piezoelectric diaphragm and the second piezoelectric diaphragm are fixedly mounted to a movable carriage. In second example embodiment, first variable reservoir having a first piezoelectric diaphragm contracts and a second variable reservoir having a second piezoelectric diaphragm expands during an extension movement of the actuator element, and vise versa during a withdrawal movement of the actuator element.