Abstract:
Noise power is estimated for subcarriers in a multicarrier system by first decoding a received multicarrier signal and then using the decoded signal information and the received signal information to perform the estimation. Soft decision or hard decision decoding may be used. In at least one embodiment, channel estimates are also made using the decoded signal information and the received signal information.
Abstract:
A concatenated equalizer/trellis decoding system for use in processing a High Definition Television signal. The re-encoded trellis decoder output, rather than the equalizer output, is used as an input to the feedback filter of the decision feedback equalizer. Hard or soft decision trellis decoding may be applied. In order to account for the latency associated with trellis decoding and the presence of twelve interleaved decoders, feedback from the trellis decoder to the equalizer is performed by replicating the trellis decoder and equalizer hardware in a module that can be cascaded in as many stages as needed to achieve the desired balance between complexity and performance. The present system offers an improvement of between 0.6 and 1.9 decibels. Cascading of two modules is usually sufficient to achieve most of the potential performance improvement.
Abstract:
The present invention involves a method for transmitting data using an orthogonal frequency division multiplex (OFDM) transmission system, such as over a terrestrial network used in satellite digital audio radio. A OFDM signal is generated based on first input data. A variation is introduced in the OFDM signal based on second input data to generate a modified OFDM signal which is transmitted. The modified OFDM signal is decoded by performing a demodulation of the modified OFDM signal then a first and second detection to obtain the first input data and the second input data. The introduction of a variance may include introducing an additional phase offset across adjacent OFDM sub-carriers, across adjacent OFDM symbols, an additional phase offset in the OFDM signal, an additional amplitude offset in the OFDM signal, an additional amplitude augmentation in the OFDM signal, and/or a second variation in the first OFDM signal based on third input data.
Abstract:
RF communications received by a wireless terminal from a servicing base station are used to determine the downlink quality report and implement link adaptation decisions. This involves first implementing an initial transmission scheme between the servicing base station and the wireless terminal. Next, a current downlink quality report corresponding to the initial transmission scheme is generated by the wireless terminal and received at the servicing base station. This downlink quality report is based in whole or in part on a bit-error probability (BEP). The current downlink quality report that corresponds to the initial transmission scheme is then compared to link adaptation thresholds. When the current downlink quality report compares unfavorably to the link adaptation thresholds, an alternative transmission scheme is selected and implemented between the servicing base station and the wireless terminals if the alternative transmission scheme is expected to result in an improved downlink quality report over the current down-link quality report.
Abstract:
A method to perform DC compensation on a Radio Frequency (RF) burst transmitted between a servicing base station and a wireless terminal in a cellular wireless communication system that first receives the RF burst modulated according to either a first or second modulation format. Samples from the RF burst, or taken from the training sequence, are produced and averaged to produce a DC offset estimate. The DC offset estimate is then subtracted from each of the samples. The modulation format of RF burst may then be identified from the samples. Depending on the identified modulation format, the DC offset estimate may be re-added to the samples when a particular modulation format is identified as the modulation format of the RF burst. This decision is made based on how well various components within the wireless terminal perform DC offset compensation.
Abstract:
The invention relates to a method for estimating a channel bit error ratio in a receiver, and to a receiver. In the method, a pseudo bit error ratio of a channel is determined. The receiver (114) comprises detecting means (202, 204, 206, 208) for detecting a data sequence of a received signal; decoding means (302) for decoding a first encoding of the detected data signal; and re-encoding meant (310) for re-encoding with the first encoding the data sequence decoded from the first encoding. The receiver (114) of the invention further comprises quality determining means (304) for providing the detected data sequence with a value for quality, and estimating means (308) for estimating the bit error ratio-provided that the quality of the detected data sequence fulfils a predetermined quality requirement by comparing the detected data sequence with the data sequence re-encoded with first encoding. The first encoding is typically a convolution coding. One way in which quality can be determined is to decode the second encoding which is, for example, a cyclic redundancy check.
Abstract:
A method and apparatus for effectively monitoring quality of a traffic channel in a communication, and in response, modifying transmission coding or data transmission rates, or both, improves communication quality and increases data transfers rates in digital wireless communication systems. A channel quality estimator determines and evaluates the bit error rate (BER) of a signal on a control channel and estimates the quality of the traffic channel based on the quality of the control channel signal. Accordingly, the processing and control circuitry of either a mobile station or base station adjusts the error correction applied to traffic channel transmissions. The traffic channel data transmission rate may also be modified based on the control channel signal quality.
Abstract:
A communication system (1) comprises a transmitter (2), a receiver (3), and an up/down link communication channel (4, 6) arranged for data communication from the transmitter (2) through the up link communication channel (4) to the receiver (3). The communication system (1) is further arranged to feedback data from the receiver (3) through the down link communication channel (6) to the transmitter (2). The receiver (3) comprises a bad frame indicator (5) for providing a bad frame indication (BFI) upon receipt of a corrupted frame, which is present in synchronized data communicated over the up link communication channel (4); and the transmitter (2) comprises resynchronization means (7) coupled to the down link communication channel (6) for receiving BFI related data and in response thereto recommencing data communication over the up link communication channel (4), in accordance with a resynchronization procedure, which starts from a predetermined state. A fast acting feedback resynchronization procedure for a GSM speech system is presented which prevents substantial error propagation from occurring at the receiver end. FIG. 1
Abstract:
A method and apparatus for controlling the transmit power levels of first and second base station transceivers, wherein the first and second base station transceivers are respectively associated with first and second sectors of a cell. The received signal strength of a communication signal arriving at the mobile station is initially determined. A power control value that is based on the received signal strength is then transmitted from the mobile station to the first and second base station transceivers. A first received power control value is next generated by attempting to receive the transmitted power control value at the first base station transceiver, and a second received power control value is generated by attempting to receive the transmitted power control value at the second base station transceiver. A common transmit power value is calculated at a base station controller for the first and second base station transceivers when the first and second received power control values are unequal. The communication signal is then transmitted from the first and second base station transceivers in accordance with the common transmit power value.
Abstract:
Techniques for more accurately detecting the data rate of a frame of data in a cellular telephone system are described. Data is preferably received at one of four rates: full, half, quarter and eighth. A correlation is performed between the incoming soft data and the data generated by re-encoding and re-repeating the data. Variations on the approach make it readily possible to accurately perform rateset 1 or rateset 2 rate detection.