Abstract:
An apparatus and method for canceling an interference signal in a broadband wireless communication system are provided. A receiver of a wireless communication system includes at least two receive antennas for receiving a target signal of a serving base station and interference signals of at least one neighbor base station; a channel estimator for estimating channels of the signals received through the receive antennas; and a detector for detecting the target signal using channel estimation values of the received signals. Accordingly, it is possible to reduce error propagation caused by the incorrect estimation and detection of the interference signal. In addition, time delay for detecting/restoring/removing the interference signal does not occur. Moreover, the increase of additional buffers can be prevented. Consequently, the increase of hardware complexity can be prevented.
Abstract:
Various aspects of a method for and system for multiple input multiple output (MIMO) channel estimation are presented. Aspects of a method for computing channel estimates in a radio frequency (RF) communications system may comprise decomposing a direct matrix computation into a plurality of constituent matrices, and jointly computing a plurality of channel estimates for a corresponding plurality of channel estimate streams received via a plurality of RF channels based on at least a portion of the plurality of constituent matrices. Aspects of a system for computing channel estimates in an RF communications system may comprise a receiver that decomposes a direct matrix computation into a plurality of constituent matrices, and jointly computes a plurality of channel estimates for a corresponding plurality of channel estimate streams received via a plurality of RF channels based on at least a portion of the plurality of constituent matrices.
Abstract:
Transceiver circuitry for use in a multiple-input, multiple-output (MIMO), orthogonal frequency-division multiplexing (OFDM), communications environment, is disclosed. Error correction coding according to a fixed-block size code, such as low density parity check (LDPC) coding, is implemented. The codeword length, and codeword arrangement, are selected by determining a minimum number of OFDM symbol periods required for a payload size, and the number of available information bits in those symbol periods. A rule-based approach, for example in a table, is used to select the codeword length, and the number of codewords required. Shortening is then applied to the code, followed by determining whether puncturing or repeating of bits is necessary to efficiently use the available OFDM symbols.
Abstract:
A method and apparatus encode a source data stream via convolutional encoding. Plural encoded data streams are interleaved and transmitted on plural transmission channels. Data groups generated via convolutional encoding are interleaved via time-interleaving functions to disperse selected bits within puncture groups of the data groups, bits in between data groups, and bits in selected sets of data groups to facilitate reconstruction of the source data stream from at least a portion of the interleaved data stream received on at least one transmission channel. The time-interleaving functions are selected to facilitate reconstruction of the source data stream from one transmission channel following continuous blockage. Subsets of bits of puncture groups are selected to allow reconstruction of the source data stream from more than one of the transmission channels using a minimum number of subsets. Multiple combinations of subsets can be received on both transmission channels to reconstruct the source data stream following blockage of one channel. Decoding is performed via a Viterbi decoder.
Abstract:
A signal detection method and apparatus in a receiver in a MIMO mobile communication system. The receiver orders symbol combinations transmittable from a transmitter in an ascending order of the difference between the symbol combinations and transmit symbols produced by eliminating inter-symbol interference from a received signal, initializes a symbol combination with the minimum difference to an ML solution, calculates the distance between a first symbol combination and the transmit symbols and the cost of a second symbol combination, detects a symbol combination having a distance to the transmit symbols equal to the distance between the first symbol combination and the transmit symbols, and having a minimum distance, and decides the first symbol combination as the ML solution if the minimum distance exceeds the distance between the first symbol combination and the transmit symbols.
Abstract:
A method allocates data rates to layers to be transmitted in a multiple input, multiple output communications system. An input data stream is demultiplexed into multiple layers. For each layer, determine statistics representing a capacity of the layer based on past observations of transmitting the layer through a channel. For each layer, determine an optimum data rate based on the statistics. For each layer, determine if the optimum data rate is less than a minimum data rate of a set of available bit rates, and, if true, selecting, for a particular layer, the minimum data rate from the set of available data rates, and otherwise, if false, selecting, for the particular layer, a closest data rate from the set of available data rates that is less than the optimum data rate.
Abstract:
A method and system for processing information data in a wireless communications system for reducing the complexity in spatial multiplexing of signals over different transmit antennas. In orthogonalized spatial multiplexing with the resolution of one, encoded data are interleaved and converted into a plurality of parallel sub-streams. Each sub-stream is then spreaded with a user specific spreading code with an intentional delay offset of few chips prior to modulating the encoded data for transmission. Likewise, in orthogonalized spatial multiplexing with the resolution of two, encoded data are interleaved and converted into a plurality of parallel sub-stream pairs. Each sub-stream pair is spreaded pairwise with a user specific spreading code with an intentional delay offset of few chips.
Abstract:
The present invention discloses a MIMO system and method, which is suitable for MC-CDMA communication system with multiple paths to obtain the spectrum efficiency and gain simultaneously. The transceiver includes steps of simultaneously transferring a transmitting data to a plurality of parallel data streams, and space time block encoding each data. Then, spreading the encoded data streams with a pre-designed space-path spreading code, and transmitting data with the transmit antennas through a multiple paths. Finally, at each receiver, despreading received data by the matched filters, and separating mutually interfering signal with a linear combiner and a BLAST detector to obtain the diversity gain.
Abstract:
A method of controlling signal transmission in a Multiple Input Multiple Output (MIMO) communication system including selecting a modulation and code set (MCS) for each of M data streams transmitted via M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M-1 or fewer transmitting antennas from the M transmitting antennas for transmitting the data streams based on channel quality information indicative of a transmission performance of the selected MCS corresponding to each of the M transmitting antennas. In another example, the present invention provides a novel method of controlling signal transmission in a MIMO communication system including selecting M weight vectors for streams transmitted by each of M transmitting antennas in a transmitting side of the MIMO system, and selectively selecting M-1 or fewer streams and weight vectors from the M weight vectors for transmitting data streams based on channel quality information indicative of transmission performance of the selected weight vectors corresponding to each of the M vector spaces.
Abstract:
The invention realizes an SVD-MIMO transmission having resistance to the variations in the channel characteristic, which saves the feedback from the receiver to the transmitter. The receiver updates the current one into a new channel matrix Hnew every 100 OFDM symbols, and performs the reception processing by updating the current one into a new decoding weight matrix Unew acquired by the singular value decomposition of the channel matrix Hnew. On the other hand, the transmitter continues to use the original transmission weight matrix V. The diagonal matrix D is turned into a non-diagonal matrix because of the variations in the channel characteristic, where the elements except for the diagonal elements take the values except for zero. This shows that cross talks are generated at this moment. The receiver acquires the cross talk gains, and cancels the cross talk signals of the reception signal to thereby realize the signal transmission without cross talks in consequence.