Abstract:
A method (300) and system (100) for sharing a controller for a combined cellular phone and satellite radio includes a cellular phone module (102), a satellite radio module (106), and a controller module (108) having a digital signal processor (120) shared by the cellular and satellite modules. A base band processor (118) of the satellite module can provide a digital audio output (107) to a stereo decoder (122) of the controller module and a base band module (112) of the cellular phone module can provide a digital audio output (109) to the stereo decoder. The base band processor of the satellite module can provide compressed audio (111) to the DSP for longer term storage within a memory (129). The DSP can also receive control signaling (113) from the base band processor of the satellite radio module and control signaling (117) from the base band processor of the cellular phone module.
Abstract:
An interoperable receiver adapted to receive signals in multiple SDARS bands. The advantageous operation is afforded by the design of the receiver by which an entire band consisting of multiple carriers is received at one time. Receipt and processing of each SDARS band signals is then effectuated by retuning a synthesizer as necessary. In the illustrative embodiment, the invention further includes circuitry for simultaneously receiving first and second ensembles. The first ensemble including a first signal from a first source, a first signal from a second source and a first signal from a third source. The second ensemble including a second signal from the first source, a second signal from the second source and a second signal from the third source. In a preferred embodiment, the inventive receiver is adapted to receive and output audio signals along with data signals simultaneously.
Abstract:
The invention relates generally to a receiver unit in a digital broadcast system for receiving a broadcast signal comprising content segments and control data, and generating an output signal using the content segments and previously stored content segments. The previously stored content segments are retrieved from a local memory device using the control data and inserted among the received content segments.
Abstract:
A portable media player for receiving and storing a satellite digital audio radio service (SDARS) content stream is provided. Also provided are associated devices such as an integrated antenna and docking station, an SDARS receiver module for detachable connection to a player, digital transceiver circuits for connecting an SDARS receiver to various SDARS-ready devices, an SDARS digital antenna, and an SDARS subscription cartridge, as well as methods for operating same.
Abstract:
A communication system (10) using hierarchical modulation includes at least one satellite (12 & 13) transmitting a data stream and a hierarchical modulated data stream, and at least one terrestrial station (16) transmitting the data stream and the hierarchical modulated data stream. The communication system can further include at least one receiver (18) for demodulating and combining the data stream from at least one satellite and from at least one terrestrial station and for hierarchically demodulating and combining the hierarchical modulated data stream from at least one satellite and the hierarchical modulated data stream from at least one terrestrial station. The terrestrial station can be a terrestrial repeater repeating the data stream and the hierarchical data stream from at least one satellite. The system can also include an uplink (11) having a hierarchical modulator for modulating both the data stream and the hierarchical data stream.
Abstract:
A method (30) of digital remodulation of a received or source signal using a digital audio radio (116) having a first digital radio frequency path (119 to 116) or using a first digital radio frequency comprises the steps of re-encoding (38) the received signal to provide a re-encoded digital signal, reformatting (40) the re-encoded digital signal into a new digital format signal, and digitally modulating (42) a radio frequency carrier with the new digital format signal. The method further comprises the step of selectively switching (42) a radio frequency path of the digital audio radio from the first digital radio frequency path to a second radio frequency path (114 to 116) or from the first digital radio frequency to a second digital radio frequency having the radio frequency carrier with the new digital format signal.
Abstract:
Various applications, systems and methods for using, and enhancing V2V communications for various purposes are described. These systems and methods leverage various aspects of satellite radio broadcasts in combination with V2V communications. In some embodiments, V2V-enabled vehicles can receive advertisements or offers from RSEs, or even other V2V enabled vehicles, in a defined Target Region, which may then be played to a user in-vehicle once a given Trigger Region has been entered. By logging all advertisements or offers played to a user and sending the log to an RSE, for example, and from there to a content provider (e.g., an SDARS service operator), verified delivery of advertisements is achieved, which allows the content provider to obtain significant revenues from advertisers. In return for uploading the playback record from the vehicle to the RSE, a variety of incentives may be offered, such as (i) free or discounted satellite radio subscription; (ii) download credits for music or videos from an online store; (iii) reduced or free tolls on toll roads (e.g., RSE embedded in a toll collection plaza); (iv) premium audio or video content, (v) credit at an online store; and (vi) a special coupon code redeemable for merchandise.
Abstract:
A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.
Abstract:
A satellite system provides geosynchronous satellites in elliptical orbits in respective elliptical orbital planes separated by 120 degrees. The satellites traverse a common figure-eight ground track comprising northern and southern loops. The satellites are controllably switched to operate the satellite currently traversing the northern loop to deliver a selected signal (e.g., a selected frequency signal) to satellite receivers.
Abstract:
A digital receiver unit (28) having a backup energy source (214) for use in a vehicle (250) that operates on a primary energy source (216) includes a receiver (203) powered by the primary energy source when the vehicle is operating, a switching mechanism (210 and 212) for switching the receiver between the primary energy source and the backup energy source and a controller (210) coupled to the receiver for controlling the switching mechanism. The receiver receives data during a scheduled predetermined time and the backup energy source powers the receiver during the scheduled predetermined time if the vehicle is not operating.