摘要:
An organic light emitting diode (OLED) and a method of manufacturing the same. An auxiliary layer comprising a high density metallic compound and an emission layer are formed by a laser induced thermal imaging (LITI) process. The LITI process reduces manufacturing costs and time by eliminating the need for a mask patterning process. The metallic compound has a density of 2 g/cm3 or greater to promote adhesion and improve interfacial planarization. This results in improved luminance uniformity (i.e. luminance mura) between pixels within an OLED display device.
摘要翻译:有机发光二极管(OLED)及其制造方法。 通过激光诱导热成像(LITI)工艺形成包含高密度金属化合物和发射层的辅助层。 LITI工艺通过消除对掩模图案化工艺的需要来降低制造成本和时间。 金属化合物的密度为2g / cm 3以上以促进粘合并改善界面平面化。 这导致OLED显示装置内的像素之间的亮度均匀性(即,亮度)。
摘要:
An organic light-emitting diode (OLED) includes a first electrode, a hole injection layer formed on the first electrode, an inverse energy level layer formed on the hole injection layer, a hole transport layer formed on the inverse energy level layer, a light-emitting layer formed on the hole transport layer, an electron transport layer formed on the light-emitting layer, an electron injection layer formed on the electron transport layer, and a second electrode formed on the electron injection layer. The work function of the inverse energy level layer is higher than the highest occupied molecular orbital (HOMO) of the hole injection layer and the hole transport layer.
摘要:
An organic optoelectronic device and a display device including the same are disclosed, and the organic optoelectronic device includes an anode, a cathode and at least one organic layer interposed between the anode and the cathode, wherein the organic thin layer includes an emission layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, or a combination thereof, the organic thin layer includes an emission layer and a plurality of a hole transport layers, the hole transport layer contacting the emission layer of the plurality of hole transport layer includes a compound represented by a combination of Chemical Formula 1, Chemical Formula 2 or 3, and Chemical Formula 4, and one of the hole transport layers not contacting the emission layer includes a compound represented by Chemical Formula B-1.
摘要:
The invention relates to a mixture containing at least two different triaryl amino compounds of formula (I). The mixture is suitable for use in an electronic device, preferably in an organic electroluminescent device, and in particular for use as a hole transport layer.
摘要:
An organic light emitting device includes a first electrode, a second electrode, and two or more organic material layers provided between the first electrode and the second electrode. The organic material layer includes a light emitting layer, and a mixed layer including one or more hole transfer materials and one or more electron transfer materials.
摘要:
An organic light emitting device including a plurality of organic layers between a first electrode and an emitting layer, wherein the organic layer includes an electron blocking layer. In one embodiment, a first organic layer, an electron blocking layer, a second organic layer and an emitting layer are formed on the first electrode. The electron blocking layer has a Lowest Unoccupied Molecular Orbital (LUMO) level which is lower than that of the first organic layer. Thus, the electron blocking layer traps excess electrons injected from the emitting layer, thereby improving lifetime characteristics of the OLED.
摘要:
Light-emitting devices comprising light-emitting diodes are described herein. These devices may include a substrate, a reflective anode, a hole-injection layer, a hole-transport layer, an emissive component, an electron-transport layer, a cathode, an enhancement layer, and a light-scattering layer. The emissive component may include first and second fluorescent light-emitting layers with an intervening phosphorescent light-emitting layer or first and second phosphorescent light-emitting layers with an intervening fluorescent light-emitting layer.
摘要:
Methods of fabricating a device having laterally patterned first and second sub-devices, such as subpixels of an OLED, are provided. Exemplary methods may include depositing via organic vapor jet printing (OVJP) a first organic layer of the first sub-device and a first organic layer of the second sub-device. The first organic layer of the first sub-device and the first organic layer of the second sub-device are both the same type of layer, but have different thicknesses. The type of layer is selected from an ETL, an HTL, an HIL, a spacer and a capping layer.
摘要:
An organic light emitting display device includes a substrate and a plurality of pixels defined in the substrate. A pixel includes red subpixel, green subpixel, blue subpixel, and white subpixel. The organic light emitting display device includes an anode electrode formed on the substrate, a cathode electrode opposing the anode electrode, and a red common emission layer, a green common emission layer, and a blue common emission layer formed across each of the red, green, blue and white subpixel areas. The blue common emission layer is disposed above and adjacent to the anode electrode, the green common emission layer is disposed above the blue common emission layer, and the red common emission layer is disposed above the green common emission layer and adjacent to the cathode electrode.
摘要:
In an aspect, an organic light emitting display device includes a first electrode, a second electrode on the first electrode, an organic light emitting layer on the first electrode, a hole transfer layer between the first electrode and the organic light emitting layer, a hole injection layer between the first electrode and the hole transfer layer and a functional layer between the hole transfer layer and the hole injection layer, and including a blue light emitting material is provided.