Abstract:
An interferometer system for measuring the height of a wafer stage utilizes four beams emitted horizontally parallel to one another and in a same direction from an interferometer and obtained by splitting a single laser beam. Two of these four beams are reference beams and the other two are measurement beams. The reference beams are mutually on opposite sides of the center point of the stage, equally separated therefrom horizontally, and are reflected back from the front surface of the stage. The wafer stage is provided with two mirrors inclined at 45° extending horizontally so as to reflect the measurement beams vertically upward. These two inclined mirrors are disposed in lower front and upper back parts of the stage and the two measurement beams are aimed and reflected at target points on them, diametrically opposite with reference to the center point of the stage. The height of the wafer stage is calculated from measured path lengths of these four beams, independent of small displacements to first degree in other linear and rotational degrees of freedom of motion of the wafer stage.
Abstract:
An inspection system and method are disclosed. The inspection system is configured to inspect a projection unit having multiple optical subsystems. The optical subsystems are configured to project an image during a lithography step. The inspection system provides self calibration by measuring both a test mask and the aerial image of the test mask with the same detector assembly. The inspection system is also capable of measuring multiple fields simultaneously using multiple detectors and 6 axis interferometry to accurately determine the position of each detector. Additionally, the inspection system is capable of measuring the distance between the test mask and the detector assembly with an indirect path around the projection unit which normally blocks the direct path.
Abstract:
A positioning stage system for precise and accurate movement of an article in an electron beam lithography system. The positioning stage system includes a support platform for supporting the article, an X-direction linear motor coupled to an X-member, a Y-direction linear motor coupled a Y-member, and a slide attached to the support platform and slidably engaged to the X-member and the Y-member. The X-member and Y-member, upon actuation of the X-direction and Y-direction linear motors, cause the support platform to move in an X-direction and a Y-direction, respectively.
Abstract:
In order to provide a static pressure air bearing having two axes usable in a vacuum environment in which the connection of the supporting air exhaust pipe does not adversely affect the motion of the bearing mechanism, air exhaust pipes are connected only with the fixed part(s) of the lower axis. Air exhaust from the upper axis is conducted through inner air exhaust piping (passages) formed within the fixed parts of the upper and lower axes, so that the exhaust pipes need not be connected with the movable parts.
Abstract:
A method for determining and calibrating substrate plane tilt and image plane tilt in a photolithography system, which includes subjecting a test substrate to multiple exposure series to form image from which image plane tilt and substrate plane tilt about the first axis can be separately determined. For a first exposure series, two test areas aligned along a second axis are subject to the same exposures at the same position along a third axis orthogonal to the horizontal reference plane. The image from this exposure series would indicate the presence of substrate plane tilt if the relative locations of the best focus images in the test areas were substantially different. For a second exposure series, the substrate plane is stepped along the third axis direction and at least one of the test areas is subjected to the same exposure at different positions in the third axis direction. The image from this second exposure series provides information on the change in position of best focus across the substrate plane, corresponding to changes in substrate position along the third axis direction. Such information is used for determining the image plane tilt and substrate plane tilt with respect to the substrate plane. The image plane tilt and substrate plane tilt information may be used to calibrate the photolithography system for processing production substrates.
Abstract:
A cantilever stage for precision movement and positioning an article such as a reticle in an electron beam photolithography system is disclosed. The cantilever stage comprises a cantilevered support platform for supporting the article extending from a movable member. The cantilever stage is supported by at least one elongate guide extending through a channel defined by the movable member. The cantilever stage may be driven by one or more actuators mechanically coupled to the movable member to move and position the cantilever stage in a first direction along the elongate guide. The actuator may be any suitable actuator such as an electromagnetic drive motors. The movable portion defines an open region which includes the center of gravity of the cantilever stage and is configured to receive a counterbalance or reaction force balancing device. The cantilever stage may also be driven in a second direction, generally perpendicular to the first direction, by an actuator mechanically coupled to the elongate guide.
Abstract:
A positioning stage assembly having a coarse stage which includes a planar motor driveable in at least two degrees of freedom, and a fine stage positioned on the coarse stage which is driveable in at least three degrees of freedom with respect to the coarse stage. More preferably, the fine stage is driveable in six degrees of freedom and includes variable reluctance actuators for positioning in three degrees of freedom.
Abstract:
The invention comprises a platform positionable in at least three degrees of freedom at least partly by interaction with coils. The platform includes a support member having a surface. Magnets are attached to the surface and part of a magnet bearing is attached to the support member. Inner and outer platforms are coupled to each other by magnet bearings and interact with coils to position the inner platform in six degrees of freedom. The invention may be particularly useful in precise positioning of semiconductor wafers and materials during photolithography and other processing.
Abstract:
A dual guide beam stage mechanism for accurate X-Y positioning for use e.g. in semiconductor processing equipment provides accurate planar motion and yaw control. Over-constraint between components in their relative motion is minimized by utilizing flexibly mounted air bearings at the connection between at least one of the moveable guide beams and its corresponding stationary guide, and between at least one of the guide beams and the adjacent stage itself. Thus stage yaw motion is provided by allowing yaw motion of one of the guide beams. Preloading provides enough constraint through the air bearings without over-constraining the moving components, thereby improving accuracy and also reducing the need for close manufacturing tolerances.
Abstract:
An XY stage for precision movement for use in aligning a wafer in a microlithography system. A main stage supporting the wafer straddles a movable beam that is magnetically driven in a first linear direction in the XY plane. A follower stage, mechanically independent of the main stage, also moves in the first linear (X) direction and its motion is electronically synchronized by a control system with the main stage motion in the X direction. Electromagnetic drive motors include magnetic tracks mounted on the follower stage which cooperate with motor coils mounted on the edges of the main stage to move the main stage in a second linear (Y) direction normal to the X direction. Thus the main stage is isolated from mechanical disturbances in the XY plane since there is no mechanical connections and is lightened by removing the weight of the magnetic tracks from the beam. A cable follower stage moves in the Y direction on the follower stage and supports the cables connecting to the main stage, thereby reducing cable drag. An air circulation system is provided in the magnetic tracks on the follower stage to remove heat from operation of the electromagnetic motors. Air is removed from a central region of each track by a vacuum duct enhanced by air plugs fitting at the two ends of the motor coil assembly on the main stage to contain the air therein.