Abstract:
A method and apparatus for video coding utilizing a motion vector predictor (MVP) for a motion vector (MV) for a block are disclosed. According to an embodiment, a mean candidate is derived from at least two candidates in the current candidate list. The mean candidate includes two MVs for the bi-prediction or one MV for the uni-prediction, and at least one MV of the mean candidate is derived as a mean of the MVs of said at least two candidates in one of list 0 and list 1. The mean candidate is added to the current candidate list to form a modified candidate list, and one selected candidate is determined as a MVP or MVPs from the modified candidate list, for current MV or MVs of the current block. The current block is then encoded or decoded in Inter, Merge, or Skip mode utilizing the MVP or MVPs selected.
Abstract:
An image processing method applied to an image processing system. The image processing method comprises: (a) computing an image intensity distribution of an input image; (b) performing atmospheric light estimation to the input image; (c) performing transmission estimation according to a result of the step (a) to the input image, to generate a transmission estimation parameter; and (d) recovering scene radiance of the input image according to a result generated by the step (b) and the transmission estimation parameter. At least one of the steps (a)-(c) are performed to data corresponding to only partial pixels of the input image.
Abstract:
A video processing method includes receiving a projection-based frame, and encoding, by a video encoder, the projection-based frame to generate a part of a bitstream. The projection-based frame has a 360-degree content represented by projection faces packed in a 360-degree Virtual Reality (360 VR) projection layout, and there is at least one image content discontinuity boundary resulting from packing of the projection faces. The step of encoding the projection-based frame includes performing a prediction operation upon a current block in the projection-based frame, including: checking if the current block and a spatial neighbor are located at different projection faces and are on opposite sides of one image content discontinuity boundary; and when a checking result indicates that the current block and the spatial neighbor are located at different projection faces and are on opposite sides of one image content discontinuity boundary, treating the spatial neighbor as non-available.
Abstract:
A method and apparatus for coding video data using Inter prediction mode or Merge mode in a video coding system are disclosed, where the video data is configured into a Base Layer (BL) and an Enhancement Layer (EL), and the EL has higher spatial resolution or better video quality than the BL. In one embodiment, at least one information piece of motion information associated with one or more BL blocks in the BL is identified. A motion vector prediction (MVP) candidate list or a Merge candidate list for the selected block in the EL is then determined, where said at least one information piece associated with said one or more BL blocks in the BL is included in the MVP candidate list or the Merge candidate list. The input data associated with the selected block is coded or decoded using the MVP candidate list or the Merge candidate list.
Abstract:
A video processing method includes: receiving an omnidirectional image/video content corresponding to a viewing sphere, generating a sequence of projection-based frames according to the omnidirectional image/video content and an octahedron projection layout, and encoding, by a video encoder, the sequence of projection-based frames to generate a bitstream. Each projection-based frame has a 360-degree image/video content represented by triangular projection faces packed in the octahedron projection layout. The omnidirectional image/video content of the viewing sphere is mapped onto the triangular projection faces via an octahedron projection of the viewing sphere. An equator of the viewing sphere is not mapped along any side of each of the triangular projection faces.
Abstract:
A video processing method includes: receiving a current input frame having a 360-degree image/video content represented in a 360-degree Virtual Reality (360 VR) projection format, applying content-oriented rotation to the 360-degree image/video content in the current input frame to generate a content-rotated frame having a rotated 360-degree image/video content represented in the 360 VR projection format, encoding the content-rotated frame to generate a bitstream, and signaling at least one syntax element via the bitstream, wherein the at least one syntax element is set to indicate rotation information of the content-oriented rotation.
Abstract:
An apparatus for dynamically adjusting video decoding complexity includes a decoding resolution control circuit and an adaptive spatial resolution decoder. The decoding resolution control circuit is arranged to dynamically determine whether at least one portion of multiple frames should be decoded in accordance with a specific resolution differing from an original resolution of the frames. In addition, the adaptive spatial resolution decoder is arranged to decode the frames according to whether the at least one portion of the frames should be decoded in accordance with the specific resolution. In particular, the apparatus further includes a system capability analyzing circuit arranged to analyze system capability of at least a portion of the apparatus, in order to generate analyzing results for being sent to the decoding resolution control circuit. An associated method is also provided.
Abstract:
A method for three-dimensional video encoding or decoding includes receiving first data associated with a current block of a current frame corresponding to a current view; determining a derived disparity vector for disparity-vector based motion-compensated-prediction (DV-MCP) of the current block, wherein the derived disparity vector is derived from a constrained neighboring block set of the current block, and the constrained neighboring block set corresponds to one or more spatial neighboring blocks on left side of the current block, one or more collocated blocks of the current block, or both said one or more spatial neighboring blocks on the left side and said one or more collocated blocks of the current block; and applying inter-view predictive encoding or decoding to the first data based on the derived disparity vector.
Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) for a motion vector (MV) of a current block of a current picture in Inter, or Merge, or Skip mode. The method selects a co-located block corresponding to a co-located picture and receives one or more reference motion vectors (MVs) of one or more co-located reference blocks associated with the co-located block. The method also determines a search set and determines a search order for the search set, if the search MV corresponding to the given reference list is not available, the search order then searches the search MV corresponding to a reference list different from the given reference list. Finally, the method determines the MVP for the current block based on the search set and the search order and provides the MVP for the current block.
Abstract:
A method and apparatus for three-dimensional video encoding or decoding with conditionally constrained disparity vector are disclosed. In one embodiment, a derived DV (disparity vector) for the current texture block is determined and DV constraint is applied or is not applied to the derived DV to obtain a final derived DV. Inter-view predictive encoding or decoding is then applied to the input data utilizing at least one of selected coding tools, wherein a same final derived DV is used by all selected coding tools, and the selected coding tools comprise inter-view residual prediction, view synthesis prediction and inter-view motion parameter prediction.