Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A base station apparatus for transmitting a reference signal in a wireless communication system is provided in which a processor generates the same sequence for resource elements (REs) allocated to each layer for reference signal transmission and spreads or covers Walsh codes for a user equipment-specific reference signal sequence such that sequences generated for the REs can be orthogonal to each other on a time axis. The Walsh code spreading or covering by the processor is applied on a frequency axis based on a plurality of resource blocks (RBs) or based on a pair of RBs such that mutually different sequences having mutually different sequence values can be mapped between RBs or between pairs of RBs. A transmission module transmits the reference signal, to which the generated reference signal sequence is applied to user equipment via each layer.
Abstract:
The present invention provides for applying a cyclic redundancy check (CRC) to a data signal. The present invention includes attaching a first CRC to a first data signal block having a first length, segmenting the first data signal block attached with the first CRC into a plurality of second data signal blocks having a length shorter than the first length, respectively generating a second CRC for each second data signal block, and attaching the generated second CRC to the respective second data signal block. Moreover, the first CRC and second CRC may be generated from respectively different CRC generating polynomial equations.
Abstract:
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to: receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract translation:根据一个实施例,用于移动通信系统的用户设备被配置为:经由控制信道接收包括第一场和第二场的控制信息,所述第一场指示N(N≥2)个资源块组 (RBG)集合,并且所述第二字段包括位图,其中所述位图的每个位用于指示是否分配所述N个RBG集合中的所指示的一个中的对应资源块(RB) 解释控制信息中的资源分配的第一场和第二场; 并使用控制信息接收数据。 RBG集合n(0≦̸ n
Abstract:
A method for transmitting a downlink signal in a wireless mobile communication system. The method according to one embodiment includes generating a resource indication value (RIV) indicating a start index (S) of consecutive virtual resource blocks (VRBs) and a length (L) of the consecutive VRBs; transmitting downlink control information including resource block allocation information. The downlink control information is common information for plural users, and the resource block allocation information includes the RIV. The method according to the embodiment further includes transmitting the downlink signal on the consecutive VRBs. If Y−1≦└X/2┘, then the RIV is defined by RIV=X(Y−1)+Z, else the RIV is defined by RIV=X(X−Y+1)+(X−1−Z), where X=└NVRB/G┘, Y=L/G, and Z=S/G, in which, L is the length of the consecutive VRBs, S is the start index of the consecutive VRBs, NVRB is the number of VRBs, L is a multiple of G, S is a multiple of G, and G is an integer of 2 or higher.
Abstract:
The present application discloses a method in which a base station transmits a reference signal sequence in a wireless communication system. In detail, the method comprises the steps of: generating a pseudo-random sequence using a first m-sequence and a second m-sequence; generating the reference signal sequence using the pseudo-random sequence; and transmitting the reference signal to a mobile station via antenna ports different from one another. The second m-sequence has an initial value containing parameters for discriminating reference signal sequences among users.
Abstract:
The present invention relates to receiving control information in an orthogonal frequency division multiplexing (OFDM) system of a mobile communication system. The present invention includes receiving information related to a number of OFDM symbols in a subframe for receiving first control information, receiving information related to a number of OFDM symbols in the subframe for receiving second control information, decoding the first control information according to the received information related to the number of OFDM symbols in the subframe for receiving the first control information, and decoding the second control information according to the received information related to the number of OFDM symbols in the subframe for receiving the second control information, wherein the number of OFDM symbols for receiving the first control information is less than or equal to the number of OFDM symbols for receiving the second control information.
Abstract:
A method for transmitting a Channel State Information (CSI) reporting at a user equipment (UE) in a wireless communication system is disclosed. The method includes transmitting a rank indicator (RI) and a first type precoding matrix indicator (PMI) to a base station (BS) according to a first CSI feedback type; transmitting a second type PMI to the BS according to a second CSI feedback type, wherein the RI and the first type PMI are jointly coded, and transmitted through a physical uplink control channel (PUCCH), wherein the RI and the second type PMI are not jointly coded, and transmitted through the PUCCH, wherein a transmission period of the first type PMI is different than a transmission period of the second type PMI, and wherein the transmission period of the first type PMI is longer than the transmission period of the second type PMI.
Abstract:
A method of transmitting packet in a mobile station is provided. The method includes determining whether a resource reserved for a special purpose is overlapped with a resource for transmitting a packet by the mobile station, on the basis of resource allocation information on the mobile station, and delaying the transmission of the packet if the reserved resource is overlapped with the resource for transmitting the packet. Accordingly, it is possible to increase uplink packet transmission efficiency without increasing downlink overhead, by avoiding or adjusting collision of an uplink packet transmission with a time-frequency resource reserved for another purpose.