Abstract:
Embodiments are directed to an enclosure for an electronic device. In one aspect, an embodiment includes an enclosure having an enclosure component and an internal component that may be affixed along a bonding region. The enclosure component may be formed from an enclosure material and defines an exterior surface of the enclosure and an opening configured to receive a display. The internal component may be formed from a metal material different than the enclosure material. The bonding region may include an interstitial material that has a melting temperature that is less than a melting temperature of either one of the enclosure material or the metal material. The bonding region may also include one or more of the enclosure material or the metal material.
Abstract:
An electronic device includes a housing having an opening that includes an interior surface with a portion that is only viewable from an external vantage point at a viewing angle that is other than ninety degrees (90°). The electronic device also includes a SIM card tray that is removable from the housing via the opening and the SIM card tray includes an angled surface. Information is encoded in the form of text that is laser etched on the angled surface. The text is characterized as having an aspect ratio that corresponds to the viewing angle.
Abstract:
An electronic device includes a housing having an opening that includes an interior surface with a portion that is only viewable from an external vantage point at a viewing angle that is other than ninety degrees (90°). The electronic device also includes a SIM card tray that is removable from the housing via the opening and the SIM card tray includes an angled surface. Information is encoded in the form of text that is laser etched on the angled surface. The text is characterized as having an aspect ratio that corresponds to the viewing angle.
Abstract:
This application relates to thermal management of a computing device using various features that can dissipate and direct thermal energy. In some embodiments, a thermal insert is set forth for separating a component from a cover glass of the computing device. The thermal insert can be attached to a frame of the computing device by insert molding the thermal insert to the frame. In other embodiments, a graphite strip can be disposed across different surfaces within the computing device in order to direct thermal energy away from a component of the computing device. In yet other embodiments, a thermal spreader and thermally conductive adhesive can be disposed over different surfaces of the computing device. For example, the thermal spreader and thermally conductive adhesive can be used to direct thermal energy away from a backlight of the computing device.
Abstract:
An electronic device having a securing member for a camera module is disclosed. The securing member may include several flexible spring elements extending around the camera module to maintain the position of the camera module during an assembly process of the electronic device. The securing member and the housing may be made from an electrically conductive material or materials. In this manner, the securing member may further provide the camera module with an electrical ground to prevent excessive electric charge within the camera module. In some embodiments, an alignment member is positioned on the housing and aligns the camera module and/or securing member with an aperture of the housing.
Abstract:
An acoustically permeable material is disposed within an aperture of an electronic device to provide aesthetic appeal for the electronic device and protection for an acoustic device mounted within the electronic device. A stiffener is used in conjunction with the acoustically permeable material to improve its ability to resist permanent mechanical deformation from external forces. In some embodiments the stiffener may have multiple cavities enabling improved isolation between multiple acoustic devices within the same aperture. Other methods of employing acoustically permeable materials are disclosed that improve the aesthetic appeal, acoustic performance and/or manufacturability of the electronic device.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.