摘要:
Electrolytes and electrolyte additives for energy storage devices comprising an ether compound are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from ether compounds.
摘要:
In some embodiments, an electrode can include a first and second conductive layer. At least one of the first and second conductive layers can include porosity configured to allow electrolyte to flow therethrough. The electrode can also include an electrochemically active layer having electrochemically active material sandwiched between the first and second conductive layers. The electrochemically active layer can be in electrical communication with the first and second conductive layers.
摘要:
Silicon particles for active materials and electro-chemical cells are provided. The active materials comprising silicon particles described herein can be utilized as an electrode material for a battery. In certain embodiments, the composite material includes greater than 0% and less than about 90% by weight silicon particles, the silicon particles having an average particle size between about 10 nm and about 40 μm, wherein the silicon particles have surface coatings comprising silicon carbide or a mixture of carbon and silicon carbide, and greater than 0% and less than about 90% by weight of one or more types of carbon phases, wherein at least one of the one or more types of carbon phases is a substantially continuous phase.
摘要:
An energy storage device includes a first electrode and a second electrode, a separator between the first electrode and the second electrode, and an electrolyte in contact with the first electrode, the second electrode, and the separator. The electrolyte includes at least one of a fluorine-containing cyclic carbonate, a fluorine-containing linear carbonate, and a fluoroether. At least one of the first electrode and the second electrode includes a self-supporting composite material film. The composite material film has greater than 0% and less than about 90% by weight of silicon particles, and greater than 0% and less than about 90% by weight of one or more types of carbon phases. At least one of the one or more types of carbon phases can be a substantially continuous phase that holds the composite material film together such that the silicon particles are distributed throughout the composite material film.
摘要:
A clamping device for an electrochemical cell stack is provided. The clamping device can include a first plate and a second plate. The second plate can be positionable relative to the first plate such that a space between the first plate and the second plate can be sized to receive an electrochemical cell stack. The device also can include a coupling member coupling the first plate to the second plate. At least one of the first and second plates can be movable away from the other plate. The coupling member can have a first end portion and a second end portion. The device further can include an elastic member disposed between the first end portion and the second end portion.
摘要:
Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
摘要:
Silicon particles for active materials and electro-chemical cells are provided. The active materials comprising silicon particles described herein can be utilized as an electrode material for a battery. In certain embodiments, the composite material includes greater than 0% and less than about 90% by weight of silicon particles. The silicon particles have an average particle size between about 0.1 μm and about 30 μm and a surface including nanometer-sized features. The composite material also includes greater than 0% and less than about 90% by weight of one or more types of carbon phases. At least one of the one or more types of carbon phases is a substantially continuous phase.
摘要:
Electrolyte formulations for energy storage devices are disclosed. The energy storage device comprises a first electrode and a second electrode, where one or both of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Electrolyte formulations as described herein are electrolyte compositions comprising two or more components such as solvents, co-solvents, salts and/or additives. In some embodiments, three or more, four or more, five or more, six or more, seven or more, or eight or more components are included in the electrolyte composition.
摘要:
Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at
摘要:
Systems and methods are provided for state-of-charge balancing in battery management systems for Si/Li batteries. At least one state-of-charge (SOC) model may be configured, particularly to account for one or more unique characteristics associated with a cell type of one or more cells of the plurality of lithium-ion cells, and a state-of-charge (SOC) of a plurality of lithium-ion cells may be assessed. Based on the assessing of the state-of-charge (SOC), the plurality of lithium-ion cells may be controlled. The assessing may include calculating or estimating the state-of-charge (SOC) using the at least one state-of-charge (SOC) model. The controlling may be configured to equilibrate the state-of-charge (SOC) of the plurality of lithium-ion cells, or to modify a state-of-charge (SOC) of an individual lithium-ion cell or a group of lithium-ion cells, so that the plurality of lithium-ion cells as a whole has a balanced state-of-charge (SOC).