Method for manufacturing nano-carbon microparticle

    公开(公告)号:US11261094B2

    公开(公告)日:2022-03-01

    申请号:US16614875

    申请日:2018-04-25

    Inventor: Peng Wu Yanting Cai

    Abstract: The invention provides a method for manufacturing nano carbon micro particles, including the following steps: step one: digesting the Malvaceae plants to produce solutions containing lignin; step two: extracting lignin condensation from the solution containing lignin, and then removing salt from the lignin condensation to form material containing lignin; step three: carbonizing the material containing lignin to form carbides; step four: crushing the carbides; step five: performing high-frequency heat treatment on the crushed carbides to obtain carbon micro particles; further including step six: crushing again the carbon micro particles so that the carbon micro particles are nano-sized and finely pulverized. The high-purity carbon micro particles obtained by the present invention have excellent properties in aspects of conductivity, wear resistance, heat resistance, corrosion resistance, etc., which can be used as an electromagnetic sealing material, a wear-resistant material, a heating element, a heat-resistant material, corrosion resistant materials, the application is extremely wide.

    METHOD FOR MANUFACTURING NANO-CARBON MICROPARTICLE

    公开(公告)号:US20210155485A1

    公开(公告)日:2021-05-27

    申请号:US16614875

    申请日:2018-04-25

    Inventor: Peng WU Yanting CAI

    Abstract: The invention provides a method for manufacturing nano carbon micro particles, including the following steps: step one: digesting the Malvaceae plants to produce solutions containing lignin; step two: extracting lignin condensation from the solution containing lignin, and then removing salt from the lignin condensation to form material containing lignin; step three: carbonizing the material containing lignin to form carbides; step four: crushing the carbides; step five: performing high-frequency heat treatment on the crushed carbides to obtain carbon micro particles; further including step six: crushing again the carbon micro particles so that the carbon micro particles are nano-sized and finely pulverized. The high-purity carbon micro particles obtained by the present invention have excellent properties in aspects of conductivity, wear resistance, heat resistance, corrosion resistance, etc., which can be used as an electromagnetic sealing material, a wear-resistant material, a heating element, a heat-resistant material, corrosion resistant materials, the application is extremely wide.

    Carbide, nitride and silicide enhancers for laser absorption

    公开(公告)号:US10723160B2

    公开(公告)日:2020-07-28

    申请号:US15877427

    申请日:2018-01-23

    Abstract: A universal or all-purpose laser marking composition for forming satisfactorily dark laser marks on a wide variety of substrates is provided. The marking composition comprises an enhancer of nitrides, carbides, silicides, and combinations thereof. The enhancer may be selected one or more of ferromanganese, ferrosilicon, FexSi(1-x) where X can range from about 0.005 to 0.995, Fe5Si2, MgFeSi, SiC, CaSi, (Co)Mo, MoSi2, TiSi2, ZrSi2, WSi2, MnSi2, YSi, Cu5Si, Ni2Si, Fe3C, Fe7C3 and Fe2C, MoC, Mo2C, Mo3C2, YC2, WC, Al4C3, Mg2C, Mg2C3, CaC2, LaC2, Ta4C3, Fe2N, Fe3N, Fe4N, Fe7N3, Fe16N2, MoN, Mo2N, W2N, WN, WN2, and combinations thereof and combinations thereof. Upon disposing the marking composition on a substrate and exposing the marking composition to laser radiation, the marking composition absorbs the laser radiation, increases in temperature, chemically bonds with the substrate, and when formed on each of a metal, glass, ceramic, stone, and plastic substrates, the mark has a negative ΔL dark contrast value of at least −1 compared to a mark formed by the marking composition without the enhancer.

    Nanolaminated 2-2-1 MAX-phase compositions

    公开(公告)号:US10538431B2

    公开(公告)日:2020-01-21

    申请号:US15554904

    申请日:2016-03-01

    Abstract: The present invention is directed to crystalline solids having an empirical formula of M2A2X, wherein M is at least one Group IIIB, IVB, VB, or VIB metal, preferably Cr, Hf, Sc, Ti, Mo, Nb, Ta, V, Zr, or a combination thereof; wherein A is Al, Ga, Ge, In, Pb, or Sn, or a combination thereof; and each X is CxNy, where x+y=1. In some particular embodiments, the crystalline composition has a unit cell stoichiometry of Mo2Ga2C.

Patent Agency Ranking