摘要:
The present technology relates to protocols relative to utility meters associated with an open operational framework. More particularly, the present subject matter relates to protocol subject matter for advanced metering infrastructure, adaptable to various international standards, while economically supporting a 2-way mesh network solution in a wireless environment, such as for operating in a residential electricity meter field. The present subject matter supports meters within an ANSI standard C12.22/C12.19 system while economically supporting a 2-way mesh network solution in a wireless environment, such as for operating in a residential electricity meter field, all to permit cell-based adaptive insertion of C12.22 meters within an open framework. Cell isolation is provided through quasi-orthogonal sequences in a frequency hopping network. Additional features relate to apparatus and methodology subject matters concerning the handling of Beacon Requests and Registered State bit resolving to avoid circular routes.
摘要:
An ultra wide bandwidth, high speed, spread spectrum communications system uses short wavelets of electromagnetic energy to transmit information through objects such as walls or earth. The communication system uses baseband codes formed from time shifted and inverted wavelets to encode data on a RF signal. Typical wavelet pulse durations are on the order of 100 to 1000 picoseconds with a bandwidth of approximately 8 GHz to 1 GHz, respectively. The combination of short duration wavelets and encoding techniques are used to spread the signal energy over an ultra wide frequency band such that the energy is not concentrated in any particular narrow band (e.g. VHF: 30-300 MHz or UHF: 300-1000 MHz) and is not detected by conventional narrow band receivers so it does not interfere with those communication systems. The use of pulse codes composed of time shifted and inverted wavelets gives the system according to the present invention has a spatial resolution on the order of 1 foot which is sufficient to minimize the negative effects of multipath interference and permit time domain rake processing.
摘要:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
摘要:
An impulse radio communications system using one or more subcarriers to communicate information from an impulse radio transmitter to an impulse radio receiver. The impulse radio communication system is an ultrawide-band time domain system. The use of subcarriers provides impulse radio transmissions added channelization, smoothing and fidelity. Subcarriers of different frequencies or waveforms can be used to add channelization of impulse radio signals. Thus, an impulse radio link can communicate many independent channels simultaneously by employing different subcarriers for each channel. The impulse radio uses modulated subcarrier(s) for time positioning a periodic timing signal or a coded timing signal. Alternatively, the coded timing signal can be summed or mixed with the modulated subcarrier(s) and the resultant signal is used to time modulate the periodic timing signal. Direct digital modulation of data is another form of subcarrier modulation for impulse radio signals. Direct digital modulation can be used alone to time modulate the periodic timing signal or the direct digitally modulated the periodic timing signal can be further modulated with one or more modulated subcarrier signals. Linearization of a time modulator permits the impulse radio transmitter and receiver to generate time delays having the necessary accuracy for impulse radio communications.
摘要:
In a system with a spread spectrum transmitter and receiver employing composite spreading codes, the transmitter spreads, in a spreading part, a baseband modulated signal by a short code from a short code generator and a long code from a long code generator with a longer chip period than that of the short code and then transmits the spread baseband modulated signal. The receiver despreads a spread baseband received signal in a receiving part by a pair of short and long codes in one despreading part to obtain a baseband modulated signal of a direct path and despreads the spread baseband received signal by the pair of short and long codes delayed by a multipath delay time difference in the other despreading part to obtain a baseband modulated signal of a delayed path, and the baseband modulated signals thus obtained are diversity-detected to obtain a detected baseband signal.
摘要:
Access Point ranging and placement on a floorplan may be provided. A host AP may range each neighbor AP of the host AP. One or more neighbor APs that failed ranging with the host AP may be categorized in a failed neighbor AP list. The host AP may re-range each of the one or more neighbor APs in the failed neighbor AP list with a modified ranging parameter. At least one neighbor AP of the one or more neighbor APs may be categorized in the failed neighbor AP list that succeeded in re-ranging with the host AP in an extended range neighbor AP list.
摘要:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first wireless communication device may transmit, to a second wireless communication device, a time and/or frequency synchronization message using a first radio frequency (RF) technology, wherein the time and/or frequency synchronization message is used to obtain synchronization information for a second RF technology. The first wireless communication device may transmit, to the second wireless communication device, a first set of ranging measurement signals associated with the second RF technology. The first wireless communication device may receive, from the second wireless communication device, a second set of ranging measurement signals associated with the second RF technology. Numerous other aspects are described.
摘要:
In accordance with a first aspect of the present disclosure, a communication device is provided, comprising: an ultra-wideband (UWB) transceiver configured to communicate with an external communication device; a processing unit configured to switch the UWB transceiver between different transceiver modes of operation while the UWB transceiver receives or transmits a data frame; wherein the different transceiver modes of operation include a ranging mode, an angle-of-arrival (AoA) mode and/or a radar mode. In accordance with a second aspect of the present disclosure, a corresponding method of operating a communication device is conceived. In accordance with a third aspect of the present disclosure, a corresponding computer program is provided.
摘要:
Systems and methods for data transmission within the ultra-wideband ranging protocol include a first UWB device which determines a transmission block comprising a plurality of rounds each representing a period of time. The first UWB device performs a first wireless communication to perform ranging between the first UWB device and a second UWB device, within a first round of the plurality of rounds. The first UWB device may perform a second wireless communication to communicate data between the first UWB device and the second UWB device, which may be within the first round or a second round.
摘要:
Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.