摘要:
In digital, magnetic and optical storage systems for audio/video/data, a Viterbi detector is extended by a control output, and a PLL is controlled by a variable delay line at the output or inside of the PLL.
摘要:
A tracking control circuit is disclosed for use in a digital image recording and reproducing device which has a mechanism (22) for controlling the movement of a magnetic medium according to a servo control signal, which has an error correction code decoder (12), and which reproduces data recorded on the recording medium in sync blocks. The tracking control circuit includes a bit error rate detector (14), a control unit (16, 18) and a servo circuit (20). The bit error rate detector (14) calculates the frequency of bit errors in the reproduced data by counting the number of error flags from the error correction code decoder in each sync block to thereby producing bit error rate data. The control unit (16, 18) generates tracking control data corresponding to bit error rate data generated by the bit error rate detector (14) when the bit error rate data from the bit error rate detector exceeds a predetermined limit. The servo circuit (20) provides a servo control signal corresponding to the tracking control data which is supplied from the control unit (16, 18).
摘要:
A branch value output circuit checks a preceding state to which a maximum path metric state determined in a Viterbi decoding process by a Viterbi decoder has transited, uses the maximum path metric state, and determines a branch value between transitions. A correlator determines a correlation in each interval between the branch value and soft-decided received data and outputs a correlative value representing the correlation in each interval. A synchronism/asynchronism determining circuit determines whether the received data are in a synchronous or asynchronous condition based on the correlative value in each interval. If the received data are determined to be in an asynchronous condition by the synchronism/asynchronism determining circuit, the synchronism/asynchronism determining circuit supplies a phase control signal to a phase converter. The phase converter changes the phase of the received data in response to the phase control signal. Therefore, it can be detected whether the soft-decided received data are in the synchronous or asynchronous condition, and if the received data are in the asynchronous condition, the received data are controlled into the synchronous condition.
摘要:
A decoder de-interleaver comprises a de-interleaver for de-interleaving received interleaved encoded data that includes periodic decoder synchronization signals to produce de-interleaved encoded data. A decoder decodes the de-interleaved encoded data to produce output data. The de-interleaver has a latency such that the de-interleaved encoded data is delayed by (B-1) times a period of the decoder synchronization signals plus a constant interval, where B is the interleave depth. A synchronization pulse generator receives the interleaved and encoded data and generates decoder synchronization pulses that are substantially coincident with the decoder synchronization signals. A delay unit is connected between the synchronization pulse generator and the decoder for delaying the decoder synchronization pulses by the constant interval. The decoder thereby receives decoder synchronization pulses that correspond to previous decoder synchronization signals, but functions properly because the relative timing is correct. The decoder has an error detecting function by which the first B-1 decoder synchronization pulses that are generated before the de-interleaver produces valid de-interleaved encoded data are ignored.
摘要:
A cyclic redundancy check synchronizer includes an N-byte shift register for shifting an input byte string by N bytes and N-1 bytes, a compensation polynomial driver for driving a compensation polynomial by modulo-2-dividing bits of a byte output from the Nth stage of the N-byte shift register by a generator polynomial and shifting the resultant remainder by one bit in a direction toward higher-order bits, and a calculator for inputting bits of an output byte from a remainder register as high-order bits and bits of an input data byte as low-order bits and for performing compensation polynomial modulo-2 subtraction and generator polynomial modulo-2 division for the inputted bits. The cyclic redundancy check synchronizer also includes a block synchronization identifier for searching for syndrome output signals from the calculator at an interval of a byte time to check whether the same syndrome signal is outputted from the calculator successively a predetermined number of times or more at an interval of a block period, and a data selector for selecting bits constituting a byte from among output bits from the N-byte shift register according to a certain one of the syndrome output signals from the calculator resulting in a block synchronous state in response to a data selection signal from the block synchronization identifier to output byte-synchronized data.
摘要:
A data detecting apparatus for detecting desired data from a digital signal comprising a first sampling circuit for sampling the digital signal to output samples, an interpolating circuit for interpolating signal values between the samples outputted from the first sampling circuit, and a second sampling circuit for extracting those signal values interpolated by the interpolating circuit which match a phase of a point at which the desired data exists. This constitution allows to implement all blocks making up the data detecting apparatus with digital signal processing circuits synchronously operating on the a clock, detecting the reproduced signal data without being affected by jitters contained in reproduced signals coming from a channel. The constitution also makes it possible to form on a single LSI chip such circuits including the data detecting apparatus, an ECC decoder, a controller, and an interface circuit as conventionally formed on discrete chips. This permits a compact implementation of an entire apparatus and reduces its production cost. Further, this constitution facilitates the design and test for implementing the embodiment on large scale integrations and eliminates the necessity for externally attached analog parts, making the implementation free of adjustment and less susceptible to aging.
摘要:
Channel encoded data (for example run length limited encoded data) is further encoded in accordance with a shift correction code prior to transmission. Upon reception, forward and backward shift errors present in the received channel encoded data are corrected by a shift correction decoder. The shift error correction is accomplished using a code, such as (for example) a BCH code over GF(p) or a negacyclic code, which treats each received symbol as a vector having p states. For a single shift error correction, p=3 and there are three states (forward shift, backward shift, no shift). In one embodiment, conventional error correction codewords which encode the user data may be interleaved within successive shift correction codewords prior to channel encoding, thereby enabling the error correction system to easily handle a high rate of randomly distributed shift errors (which otherwise would result in a high rate of short error bursts that exceed the capacity of the block error correction code).
摘要:
In an encoder replica of a decoder for an input code sequence which corresponds to a code symbol sequence comprising an information symbol sequence and a redundancy bit sequence, a one-bit memory (46) successively memorizes consecutive bits of the input code sequence as memorized bits. An output circuit (62) delivers replica output bits in bit series to a sequential decode controller (43) in response to the memorized bits. In response to the memorized bits and a control signal produced by the controller in response to the input code sequence and the replica output bits, the encoder replica decodes the input code sequence into a reproduction of the information symbol sequence. Preferably, the output circuit is controlled by a position counter (64) giving separate indication of bits corresponding in the input code sequence to the information symbol sequence and of bits corresponding in the input code sequence to the redundancy bit sequence. More preferably, a synchronism shift counter corrects the separate indication in consideration of a shift in synchronism of the separate indication relative to the input code sequence.
摘要:
Method of decoding data making it possible to correct certain errors, e.g. in synchronization and transmission. The method relates to decoding data transmitted in groups of blocks. Each block has n1+n2 bits, where n1 is the length of a corresponding information word. The information word is extended to an error protection block of n1+n2 bits by application of a linear error protection code and an off-set which indicates the position of the block within a group. Synchronization is established by incremental generation of a position-indicating syndrome from the block. If error correction is found to be necessary, it begins after synchronization. Synchronization is restarted if too many errors occur. A device for implementing the method includes a radio receiver (21), a microprocessor (22) for its control and a universal decoder (11) consisting on the one hand of a demodulation (13) and clock regeneration (12) component, the input of which is connected to the multiplex output of the radio receiver (21) and, on the other, of a broadcast data processing microprocessor (14), the output of which is connected to said microprocessor (22) for controlling the radio receiver.
摘要:
A detector locates a shift register sequence within a digital data stream by correlating the data stream with a sequence generated locally from a portion of the data stream. Error correction circuitry estimates errors that may have corrupted the sequence during transmission across a noisy channel and corrects them to the extent possible. The data stream and local sequence are correlated during an interval that is shifted either ahead or behind the portion of the error-corrected data stream used to initialize the local sequence generator, thereby avoiding the region during which short-term correlation between the data stream and local sequence would otherwise cause false indications of detection when only noise or random data is being received.