Abstract:
In a magnetic head measuring apparatus for measuring a magnetic head, an amplitude-modulated electric current whose amplitude is modulated by a specified carrier wave frequency and modulation frequency is applied to a magnetic head. A calibrating magnetic field generating source causes the magnetic head to generate a magnetic field having a specified strength and frequency, thereby calibrating measurement variations of the magnetic head. A magnetic head measuring device measures a high-frequency magnetic field generated from the magnetic head. If necessary, an interchangeable magnetic material probe is used to replace a probe of the magnetic head measuring device.
Abstract:
A system and method for monitoring the composition of a magnetically permeable material, where the system comprises a first container containing a volume of magnetically permeable material; a flow path for flowing the magnetically permeable material out of the container; a sensor for determining the inductance of the magnetically permeable material; and a sensor for determining the density of the magnetically permeable material. The sensors for determining the density and inductance of the magnetically permeable material are flow connected to the flow path.
Abstract:
A method and computer program to calculate a reproduction track width of an MR head. This method begins by subdividing the magnetic domain control layer of an MR element and lead conductors into several polyhedral elements. Thereafter, electric potentials are calculated for each of the polyhedral elements based on the resistance at each layer. A current density is determined for each of the polyhedral elements based on the calculated electric potentials. The current densities are integrated to calculate an initial resistance value. Further, the resistance of a local block is changed by a predetermined amount. The electric potential is calculated for each of the polyhedral elements, current density is acquired, and the acquired current densities is calculated to determine a resistance value. Finally, the reproduction track width is obtained based on the initial acquired resistance value and the acquired resistance value.
Abstract:
There is provided an apparatus and method for controlling a disc drive and, more particularly, an apparatus and method for restoring stability to a head of a hard disc drive, so that instability in a magneto resistive (MR) sensor of the disc drive can be restored through an electric shock. Instability of the MR head, i.e. incorrect alignment of the domain of the MR head, is determined by a bit error rate (BER) test and channel statistical measurement (CSM) test, and If instability of the MR bead is determined, the MR head is restored by applying electric shocks thereto. Therefore, the apparatus and method have advantages in that manufacturing process inferiority rate due to instability of head in a hard disc drive can be reduced, yield can be improved and the defect rate can be improved.
Abstract:
This invention pertains to a method and apparatus for determining the thickness of a ferromagnetic or paramagnetic material when only one side of the material is accessible. In one embodiment, the invention provides a method for engaging a constant signal with the ferromagnetic material for inducing a changed signal, generating a stepped saturation signal over a range of currents for engagement with the ferromagnetic material, detecting the changed signal as the saturation signal is varied over the range of currents, determining the relationship between the changed signal and the stepped saturation signal, and evaluating the thickness of the material based upon the relationship between the changed signal and the stepped saturation signal. In another embodiment, the invention provides for an apparatus comprising a transmitter for engaging a constant signal with the ferromagnetic material for creating a changed signal, a saturation device for generating a saturation signal over a range of currents for engagement with the ferromagnetic material, a receiver for detecting the changed signal as the saturation signal is varied over the range of currents, such that the relationship between the changed signal and the saturation signal is determined, and the thickness of the material based upon the relationship is determined.
Abstract:
A disc stabilizer for use in a spin-stand tester having a spindle motor for rotating a disc is provided. The spin-stand tester is capable of positioning a transducing head adjacent a first surface of the disc. The disc stabilizer includes a vacuum plate coupled to a spindle of the spindle motor. The vacuum plate has a top surface and a bottom surface opposite the top surface. At least one of the top and the bottom surfaces is a grooved surface including multiple vacuum channels. The grooved surface is substantially in contact with a second surface of the disc. Vacuum distributed through the multiple vacuum channels of the grooved surface is applied directly to the second surface of the disc, thereby holding the disc in place.
Abstract:
A method for testing a thin-film magnetic head with a MR read head element includes a step of applying a low-frequency or DC external magnetic field to the thin-film magnetic head from a stationary magnetic field generation unit, a step of executing a high-frequency amplification of an output from the MR read head element under the application of the external magnetic field to provide a high-frequency amplified signal, a step of deriving only a high-frequency component from the high-frequency amplified signal to provide a high-frequency component signal, and a step of judging whether the thin-film magnetic head occurs a noise or not by using the high-frequency component signal.
Abstract:
A testing apparatus for testing a disk and/or head of a disk drive that includes a disk rotating device that rotates the disk and a rotary-positioning device that rotates and positions the head, with the rotary-positioning device supporting the head such that the attitude of the head relative to the center of rotation of the rotary-positioning device is tilted in comparison to the attitude of the head relative to the rotation center of the head in the disk drive.
Abstract:
A test structure combines a first structure (1010) for erosion evaluation with a second structure (1000) for extraction of defect size distributions. The first structure (1010) is a loop structure usable determine a resistance value that varies with metal height. The second structure is a NEST structure (1000). Loop lines of the loop structure (1010) are connected on both sides of the NEST structure (1000).
Abstract:
A system for inspecting a pipe weld from within a pipe through use of magnetic particle imaging nullMPInull includes an apparatus having a head unit that carries a wire wheel brush for cleaning an inspection area along an inner diameter of a pipe weld, and an MPI medium dispenser for spraying an MPI medium upon the inspection area, both controlled by an operator. The head unit also includes a video inspection device controlled by the operator and used for viewing at least portions of the inspection area after being sprayed with the MPI medium and when under the influence of a magnetic field to determine if the weld has any defects. The head unit is connected to a drive unit. The drive unit includes a frame having a longitudinal axis and mounted on a set of drive wheels, and a set of support wheels spaced axially from the drive wheels. A linear drive motor mounted to the frame and coupled to the drive wheels moves the head unit linearly along an interior of the pipe between weld inspection areas to allow the operator to locate and inspect the welds from within the pipe.