Abstract:
Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals may be dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both sets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.
Abstract:
A flash memory device controls a common source line voltage and performs a program verify method. A plurality of memory cells is connected between a bit line and the common source line. A data input/output circuit is connected to the bit line and is configured to store data to be programmed in a selected memory cell of the plurality of memory cells. The data input/output circuit maintains data to be programmed within the data input/output circuit during a program verify operation, and decreases noise in the common source line by selectively precharging the bit line based on the data to be programmed.
Abstract:
A data storage device includes a non-volatile memory device which includes a memory cell array; and a memory controller which includes a buffer memory and which controls the non-volatile memory device. The operating method of the data storage device includes storing data in the buffer memory according to an external request, and determining whether the data stored in the buffer memory is data accompanying a buffer program operation of the memory cell array. When the data stored in the buffer memory is data accompanying the buffer program operation, the method further includes determining whether a main program operation on the memory cell array is required, and when a main program operation on the memory cell array is required, determining a program pattern of the main program operation on the memory cell array. The method further includes issuing a set of commands for the main program operation on the memory cell array to the multi-bit memory device based on the determined program pattern.
Abstract:
A semiconductor memory device comprises memory cells, a bitline connected to the memory cells, a read circuit including a precharge circuit, and a first transistor connected between the bitline and the read circuit, wherein a first voltage is applied to a gate of the first transistor when the precharge circuit precharges the bitline, and a second voltage which is different from the first voltage is applied to the gate of the first transistor when the read circuit senses a change in a voltage of the bitline.
Abstract:
An electrically alterable non-volatile multi-level memory device and a method of operating such a device, which includes setting a status of at least one of the memory cells to one state selected from a plurality of states including at least first to fourth level states, in response to information to be stored in the one memory cell, and reading the status of the memory cell to determine whether the read out status corresponds to one of the first to fourth level states by utilizing a first reference level set between the second and third level states, a second reference level set between the first and second level states and a third reference level set between the third and fourth level states.
Abstract:
The present disclosure includes methods, devices, modules, and systems for operating memory cells. One method embodiment includes applying a ramping voltage to a control gate of a memory cell and to an analog-to-digital converter (ADC). The aforementioned embodiment of a method also includes detecting an output of the ADC at least partially in response to when the ramping voltage causes the memory cell to trip sense circuitry.
Abstract:
A non-volatile semiconductor memory device includes a memory cell array having a plurality of multi-level memory cells connected in series. The plurality of multi-level memory cells forms a plurality of threshold distributions each of which corresponds to a status of a lower bit and a status of an upper bit, wherein a lower bit and an upper bit constitute a lower page and an upper page respectively. The status of the lower bit dichotomizes the threshold distributions into two groups and the status of the upper bit further dichotomizes each of two groups. When programming a memory cell of the upper page, higher potentials are applied to a non-selected word line adjacent to the selected word line than those applied to the non-selected word line when programming the memory cell of the lower page.
Abstract:
Multi-chip package devices and related data programming methods are disclosed. A multi-chip package device includes one or more memory chips and a controller. The one or more memory chips include a single level cell section and a multi level cell section. The controller is configured to control a first data storing operation for storing an input data to the single level cell section and control a second data storing operation for storing the input data stored in the single level section to the multi level cell section during an idle time.
Abstract:
A verify voltage may be changed into a plurality of voltage levels based upon a logic state of each of the memory cells and characteristics or logic states of other memory cells (e.g., adjacent) to each of the memory cells.
Abstract:
Disclosed herein is a semiconductor memory device including: a bit line and a sense line; a data storage element having a data storage state changing in accordance with a voltage applied to the bit line; a first switch for controlling connection of the sense line to the bit line; a data latch circuit having a second data holding node and a first data holding node connected to the sense line; and a second switch for controlling connection of the second data holding node of the data latch circuit to the bit line.