Abstract:
A ball distance measuring system incorporates a support received over a reference ball. A reference on the support has a diameter differing from a diameter of the reference ball by a predetermined amount visually distinguishable from a circumference of the reference ball presenting an even visual separation confirming concentric coincidence when centered with respect to the reference ball.
Abstract:
A device for ascertaining a camshaft position and a phase of an internal-combustion engine having multiple cylinders, including a first position sensor wheel having multiple teeth on its circumference and rotatably and fixedly connected to an engine camshaft; a first position sensor for detecting a tooth flank position of the first wheel; a transmission connecting the camshaft to a crankshaft; a second position sensor wheel having at least one tooth on its circumference and being connected to the transmission so that it is synchronously driven with the camshaft, and a second position sensor for detecting a tooth flank position of the second wheel. For ascertaining a camshaft position and a phase of an engine with this device, a camshaft position is assigned to a position of a tooth flank of the first wheel and a phase of the engine is assigned to a tooth flank position of the second wheel.
Abstract:
A normal detection method for measuring the distance to a measurement subject using one or more distance detectors, and obtaining a normal vector (Vn) on the measured surface of the measurement subject from the obtained measurement result (L), wherein: within a three-dimensional space, the straight line linking a first measurement point (Qa) measured at a first measurement position (Pa) using the distance detector and a second measurement point (Qd) measured at a second measurement position (Pd) different from the first measurement position (Pa) is set as a first vector (Vad); the straight line linking the first measurement point (Qa) and a third measurement point (Qf) measured at a third measurement position (Pf) different from the first measurement position (Pa) and the second measurement position (Pd) as a second vector (Vaf); and a normal vector (Vn) on the measured surface is obtained by determining the vector product of the first vector (Vad) and the second vector (Vaf).
Abstract:
The present application provides for feeler gauges. The feeler gauges include a plurality of elongate measuring leaves rotatably coupled on a common axis of rotation with an elongate housing. The leaves may be manually, selectively rotatable between a “home” position wherein the leaves are substantially aligned with the housing and an “extended” position wherein the leaves are spaced from the housing. The leaves may be relatively flexible and substantially flat such that they define a substantially constant thickness. One or more extended leaves may be used to measure the thickness of a clearance or gap. The gauges may be configured to detect, determine or measure the thickness of the leaves that are in the “home” position and/or the “extended” position, and thereby determine the total thickness of a clearance or gap measured by the extended leaves.
Abstract:
Systems, apparatuses and methods are described for integrating an electronic metrology sensor with precision production equipment such as computer numerically controlled (CNC) machines. For example, a laser distance measuring sensor is used. Measurements are taken at a relatively high sample rate and converted into a format compatible with other data generated or accepted by the CNC machine. Measurements from the sensor are synchronized with the position of the arm of the machine such as through the use of offsets. Processing yields a detailed and highly accurate three-dimensional map of a workpiece in the machine. Applicable metrology instruments include other near continuously reading non-destructive characterization instruments such as contact and non-contact dimensional, eddy current, ultra-sound, and X-Ray Fluorescence (XRF) sensors. Various uses of measurements include: multiple component matching, correction of machine drift, closed loop control of machines, and verification of product tolerances via substantially complete serialized dimensional quality control.
Abstract:
A method for locating the surface of a solid growth culture medium in a plate in a plate work position, the plate work position including a sensor and having a datum level fixed in one dimension (z), the method including: placing the plate in the plate work position; using the sensor to sense the medium surface for the positioned plate and measuring the distance to the medium surface; and referencing the measured distance to the datum level to determine a surface positional reference, relative to the datum level, in one dimension (z) for the surface of the medium in the positioned plate.
Abstract:
According to one aspect, a method of determining an attitude matrix on a portable electronic device. The method includes determining a first attitude matrix gradient using data from at least one of an accelerometer and a magnetometer, determining a second attitude matrix gradient using data from a gyroscope, fusing the first attitude matrix gradient and the second attitude matrix gradient based on a mixing coefficient to generate a fused gradient, and based on the fused gradient, updating a fine attitude matrix for the portable electronic device.
Abstract:
Proximity based systems and methods that are implemented on an electronic device are disclosed. The method includes sensing an object spaced away and in close proximity to the electronic device. The method also includes performing an action in the electronic device when an object is sensed.
Abstract:
The present invention provides a position detection device and a position detection method, which, even if a separator or an electrode is deformed, are capable of correcting such deformation and detecting a position of the separator or the electrode with high precision, and are capable of enhancing precision in subsequent steps. The position detection device (200) includes: a pressing unit (240) that presses a sheet member (22), which is cut out from a sheet material (D) wound up in a roll shape and composes a battery element, against a flat reference surface (215); and a position detection unit (230) that detects a position of the sheet member (22) pressed against the reference surface (215) by the pressing unit (240). Then, the position of the sheet member (22), which is detected by the position detection unit (230), is used as position information of the sheet member (22) in a subsequent step.
Abstract:
A method of providing range measurements for use with a vehicle, the method comprising the steps of: a) visually sensing (2) the area adjacent the vehicle to produce visual sense data (22); b) range sensing (26) objects around the vehicle to produce range sense data; c) combining the visual sense data and the range sense data to produce, with respect to the vehicle, an estimate of ranges to the objects around the vehicle (28). The estimate of ranges to the objects around the vehicle may be displayed (29) to a driver.