Abstract:
Disclosed herein is an apparatus and method of constructing a stationary wear-resistant stationary nozzle 200 and/or nozzle liner 230 for solid fueled furnaces. A transition section 210 is constructed from several flat pieces 211-218 several that may have identical starting shapes. This reduces manufacturing complexity and costs. All pieces 211-218 have a high-wear weld overlay on their inner surface 316, 416. Corner pieces 215-218 are folded into a corner shape at an outlet edge 412 and rolled into a curved shape at an inlet edge 411. Horizontal 211, 212 and vertical pieces 213, 214 are only rolled at an inlet edge 311. The pieces have seam tab 240 along longitudinal edges that are welded together to construct a transition section 210. The transition section 210 may be used as a liner to reduce wear in an existing stationary nozzle or may be constructed to be connected to an inlet piece 220 to form a strong, wear-resistant coal nozzle 200.
Abstract:
An apparatus is provided for combining oxygen and fuel to produce a mixture to be burned in a burner. The oxygen-fuel mixture is ignited in a fuel-ignition zone in a flame chamber to produce a flame.
Abstract:
A burner including a fuel-containing fluid supply nozzle which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on a furnace wall surface. The nozzle in its cross section perpendicular to the direction of flow of the fluid has a rectangular, elliptical, or substantially elliptical form having major and minor axis parts from a connecting part in the fluid transfer flow passage toward the outlet part provided on the furnace wall surface. Further, the area of a cross section perpendicular to the direction of flow of the fluid is gradually increased from the connecting part in the fluid transfer flow passage toward the outlet part. Air supply nozzle(s) for supplying combustion air are provided on the outer peripheral part of the nozzle.
Abstract:
An oxygen combustion system includes a boiler to burn fuel using combustion gas composed of oxygen-rich gas and circulating flue gas, a dust remover disposed in a flue through which flue gas discharged from the boiler flows, a second flue leading the combustion gas to the boiler, the combustion gas being made by mixing the circulating flue gas extracted downstream of the dust remover with the oxygen-rich gas, a combustion gas heater exchanging heat between the flue gas flowing between the boiler and dust remover and the combustion gas flowing through the second flue, and a flue gas cooler disposed between the heater and the dust remover to cool the flue gas. A control unit controls at least one of a flow rate and cooling medium temperature of the flue gas cooler such that temperature of the flue gas introduced into the dust remover will be between 90° C. and 140° C.
Abstract:
A burner includes a primary air-coal mixture duct coaxially extended through a secondary air wind box, a pulverized coal separator supported within the primary air-coal mixture duct, a secondary air duct including an inner secondary air duct and an outer secondary air duct coaxially formed around the primary air-coal mixture duct, a primary air-coal mixture conical outlet coupled with the outlet of the primary air-coal mixture duct, and inner secondary air and outer conical outlets coupled with the outlets of the inner secondary air and outer secondary air ducts respectively. The conical outlets are arranged to delay the mixing time of the primary air-coal mixture and secondary air flows through the primary air-coal mixture and secondary air ducts and to prolong the residence time in the center recirculation zone under the reduction ability so as to effectively reduce the formation of NOx.
Abstract:
The present application and the resultant patent provide a feed injector nozzle for a gasification system with a reaction zone therein. The feed injector nozzle may include a number of tubes extending towards the reaction zone. The tubes may define a number of passages therebetween. A cooling water channel may extend through one of the tubes. The cooling water channel may include a first side adjacent to one of the passages and a second side adjacent to the reaction zone. The first side may include a first side thickness and the second side may include a second side thickness with the first side thickness being less than or equal to the second side thickness.
Abstract:
A combustion burner 1 includes a fuel nozzle 2 that injects fuel gas prepared by mixing solid fuel and primary air, secondary air nozzles 3, 4 that inject secondary air from the outer periphery of the fuel nozzle 2, and a flame holder 5 that is arranged in an opening of the fuel nozzle 2. In the combustion burner 1, the flame holder 5 has a splitting shape that widens in the flow direction of the fuel gas. When seen in cross section along a direction in which the flame holder 5 widens, the cross section passing through the central axis of the fuel nozzle 2, a maximum distance h from the central axis of the fuel nozzle 2 to the widened end of the flame holder 5 and an inside diameter r of the opening 21 of the fuel nozzle 2 satisfy h/(r/2)
Abstract:
The invention comprises a combination burner for the gasification of pulverized fuels with an oxidation means containing free oxygen at ambient or higher pressures, as well as temperatures between 800-1800° C., with the ignition device of the pilot burner with flame monitoring and the pulverized fuel burner being integrated as a combination burner and all operating channels being routed separately from each other up to the mouth of the burner and the media carried by the channels only being mixed at the mouth of the burner. When the pilot burner is dismantled the eddy bodies 14 attached to its sleeve in the main burner oxidation means supply 17 can be exchanged quickly and easily and thus the main burner flame adapted in the optimum way to the reaction chamber contour of the reactor.
Abstract:
In order to provide a pulverized coal burner for an oxyfuel combustion boiler which attains uniform combustion from a pulverized coal burner and which constrains a temperature rise of an oxygen injection nozzle, burner inner and outer cylinders are arranged to penetrate a wind box 2 and come close to a throat portion 3. A pulverized coal feed passage 9 is provided between the burner inner and outer cylinders 4 and 5. A plurality of oxygen injection means 11 are arranged outwardly of the burner outer cylinder 4 so as to directly feed oxygen ahead of the burner outer cylinder 4.
Abstract:
A burner tip, and method of manufacture, has a support layer with an external surface and an internal surface defining at least one opening therethrough defining a passage therethrough to deliver fuel and combustion gasses, and a thermal protective layer disposed on at least one surface of the burner tip support layer. The thermal protective layer 22 has from about 5% to about 40% of an inorganic adhesive, from about 45% to about 92% of a filler, and from about 1% to about 20% of one or more emissivity agents.