Abstract:
A solid-fuel-fired burner that suppresses a high-temperature oxygen remaining region formed at the outer circumference of a flame and that can decrease the amount of NOx eventually produced is provided. A solid-fuel-fired burner that is used in a burner section of a solid-fuel-fired boiler for performing low-NOx combustion separately in the burner section and in an additional-air injection section and that injects powdered solid-fuel and air into a furnace includes a fuel burner having internal flame stabilization and a secondary-air injection port that does not perform flame stabilization, in which the air ratio in the fuel burner is set to 0.85 or more.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A combustion burner 1 includes a fuel nozzle 2 that injects fuel gas prepared by mixing solid fuel and primary air, secondary air nozzles 3, 4 that inject secondary air from the outer periphery of the fuel nozzle 2, and a flame holder 5 that is arranged in an opening of the fuel nozzle 2. In the combustion burner 1, the flame holder 5 has a splitting shape that widens in the flow direction of the fuel gas. When seen in cross section along a direction in which the flame holder 5 widens, the cross section passing through the central axis of the fuel nozzle 2, a maximum distance h from the central axis of the fuel nozzle 2 to the widened end of the flame holder 5 and an inside diameter r of the opening 21 of the fuel nozzle 2 satisfy h/(r/2)
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A combustion burner 1 includes a fuel nozzle 2 that injects fuel gas prepared by mixing solid fuel and primary air, secondary air nozzles 3, 4 that inject secondary air from the outer periphery of the fuel nozzle 2, and a flame holder 5 that is arranged in an opening of the fuel nozzle 2. In the combustion burner 1, the flame holder 5 has a splitting shape that widens in the flow direction of the fuel gas. When seen in cross section along a direction in which the flame holder 5 widens, the cross section passing through the central axis of the fuel nozzle 2, a maximum distance h from the central axis of the fuel nozzle 2 to the widened end of the flame holder 5 and an inside diameter r of the opening 21 of the fuel nozzle 2 satisfy h/(r/2)
Abstract:
A solid-fuel-fired burner that suppresses a high-temperature oxygen remaining region formed at the outer circumference of a flame and that can decrease the amount of NOx eventually produced is provided. A solid-fuel-fired burner that is used in a burner section of a solid-fuel-fired boiler for performing low-NOx combustion separately in the burner section and in an additional-air injection section and that injects powdered solid-fuel and air into a furnace includes a fuel burner having internal flame stabilization and a secondary-air injection port that does not perform flame stabilization, in which the air ratio in the fuel burner is set to 0.85 or more.