Abstract:
An infinitely-variable transmission system is disclosed. The system comprises an input shaft (10) and an output shaft (14). The transmission is operative to transmit rotational drive between the input shaft (10) and the output shaft (14). The transmission includes a variator (20) that can transmit drive at a continuously variable ratio between a minimum variator ratio and a maximum variator ratio. The transmission can operate a low-speed regime and in a high-speed regime. The transmission is operative in the low-speed regime, at a neutral low regime variator ratio, the transmission is in geared neutral, in which, the output of the transmission is stationary irrespective of the speed of the input of the transmission and at a maximum low regime variator ratio, the output of the transmission is driven from the input of the transmission at a maximum low-regime transmission ratio, In the high-speed regime, at a minimum high regime variator ratio, the output of the transmission is driven from the input of the transmission at a minimum high-regime ratio and at a maximum high regime variator ratio, the output of the transmission is driven from the input of the transmission at a maximum high-regime transmission ratio.
Abstract:
A variable transmission comprises an input shaft; three planetary gear sets; a Ravigneaux gear set; a variator comprising, a first ring assembly, a second ring assembly, a carrier assembly; various arrangements of brakes and clutches; and the output shaft. The variable transmissions comprise a continuously variable mode, an infinitely variable mode, or a combination thereof and can provide an input-coupled powersplit solution function. +Add the mention that there is a direct drive mode in one of the configuration.
Abstract:
Systems, devices, and methods are provided for the transmission of power in motor vehicles. Power can be transmitted in a smoother and more efficient manner, with smaller and even less mechanical components, by splitting torque into two or more torque paths. A power transmission apparatus comprises a power input shaft, a planetary gear set coupled to the power input shaft, and a variator, such as a continuously variable transmission (CVT), coupled to the gear set. The various components of the planetary gear set and the variator are arranged such that torque is split between two or more torque paths and then recombined before power is output to a gear box and a differential of the motor vehicle.
Abstract:
A variable transmission includes an input shaft, a planetary gear set drivingly engaged with a variator comprising, a variator carrier assembly, a first ring assembly, and a second ring assembly; and the output shaft, arranged with various combinations of brakes and clutches to produce transmissions with continuously variable or infinitely variable torque output ratios.
Abstract:
In one aspect, a computer-implemented method for enhancing the performance of a continuously variable transmission of a work vehicle may include engaging a range clutch of the continuously variable transmission, cycling a directional clutch of the continuously variable transmission between an engaged state and a disengaged state while the range clutch is engaged and controlling a position of a swash plate of the continuously variable transmission such that a ground speed of the work vehicle is maintained substantially at zero while the directional clutch is cycled between the engaged and disengaged states.
Abstract:
A power split transmission (LG) of vehicle a traction drive (F) includes a continuously variable transmission (G) and a summing transmission (SG). The continuously variable transmission (G) has a primary unit (P) and a secondary unit (S) driven by the primary unit (P). The primary unit (P) has a driveshaft (TW1) connected, directly and without the interposition of a clutch device, with the sun gear (SR) of the summing transmission (SG). The secondary unit (S) has a driveshaft (TW2) connected, without the interposition of a clutch device, with a ring gear (HR) or a planetary carrier (PT) of the summing transmission (SG). The planetary carrier (PT) or the ring gear (HR) of the summing transmission (SG) form an output element of the summing transmission (SG), which is in a driving connection with the wheel drive.
Abstract:
Disclosed herein are power transmissions having one or more operational modes, for example, a continuously variable transmission (CVT) mode, an infinitely variable transmission (IVT) mode, and an IVT/CVT mode, that can be selected for by engaging different clutches and brakes. Disclosed herein are power transmissions comprising a power input shaft, one or more planetary gear sets, a variator (such as a CVT), and one or more clutches and brakes. In some embodiments, a first brake selects an IVT mode, a second brake selects a CVT mode, and a third brake selects an IVT/CVT mode.
Abstract:
An automatic transmission includes a continuously variable transmission mechanism, a planetary gear mechanism, a clutch causing an input shaft and a first rotation element to be engaged, a coupling member which transmits rotation of the input shaft to the first rotation element, and a brake which locks rotation of a third rotation element. The input shaft is coupled to an input unit. An output shaft is coupled to a second rotation element An output unit is coupled to a fourth rotation element. The constant speed ratio of the coupling member is so set that a rotation direction of the output shaft relative to the fourth rotation element changes from a forward direction to a reverse direction according to a change in a speed ratio of the continuously variable transmission mechanism when the clutch is engaged and the brake is released.
Abstract:
In order to further develop drive arrangements with a continuously variable sub-gear mechanism, the invention proposes a drive arrangement with a continuously variable sub-gear mechanism having two circulating transmission elements, which are actively connected to one another via a circulating connecting element, having a hybrid drive comprising a first drive and at least one additional drive, and further having at least one output, wherein at least one of the two drives is interactively connected to the output, either directly or indirectly via the continuously variable sub-gear mechanism.