Abstract:
Disclosed herein are power transmissions having one or more operational modes, for example, a continuously variable transmission (CVT) mode, an infinitely variable transmission (WT) mode, and an WT/CVT mode, that can be selected for by engaging different clutches and brakes. Disclosed herein are power transmissions comprising a power input shaft, one or more planetary gear sets, a variator (such as a CVT), and one or more clutches and brakes. In some embodiments, a first brake selects an WT mode, a second brake selects a CVT mode, and a third brake selects an WT/CVT mode.
Abstract:
Disclosed herein are power transmissions having one or more operational modes, for example, a continuously variable transmission (CVT) mode, an infinitely variable transmission (IVT) mode, and an IVT/CVT mode, that can be selected for by engaging different clutches and brakes. Disclosed herein are power transmissions comprising a power input shaft, one or more planetary gear sets, a variator (such as a CVT), and one or more clutches and brakes. In some embodiments, a first brake selects an IVT mode, a second brake selects a CVT mode, and a third brake selects an IVT/CVT mode.
Abstract:
Devices and methods are provided herein for the transmission of power in motor vehicles. Power is transmitted in a smoother and more efficient manner by splitting torque into two or more torque paths. In some embodiments, a power converter is configured to have a ball-type variator and two planetary gear sets. Two clutches selectively engagement members of the variator to provide an infinitely variable transmission mode and a continuously variable transmission mode.
Abstract:
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of transmitting large amounts of power. Variable transmissions comprising three clutches, three grounding clutches or brakes, and a variator comprising a plurality of tilting variators balls disposed between a first drive ring and a second drive ring allow a single variator to function as an infinitely variable transmission when power is inputted to the carrier assembly and as a continuously variable transmission when power is inputted through a first ring assembly. Certain embodiments include a differential that allows a parallel power path around the variator to improve the variator torque capacity and a direct drive mode to improve the efficiency of the variator.
Abstract:
A transmission is provided. The transmission includes an input portion drivingly engaged with a power source, a planetary gear, a continuously variable variator, and a clutching device. The planetary gear arrangement has a portion drivingly engaged with the input portion. The continuously variable variator includes a portion which is drivingly engaged with at least one of the planetary gear arrangement and the input portion. The clutching device may be selectively drivingly engaged with a portion of the continuously variable variator. The clutching device and the planetary gear arrangement facilitate a transition between at least two operating modes of the continuously variable variator.
Abstract:
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The variable transmissions can be operated in at least two different operating modes, depending on an engagement status of the clutches therein. Methods of running the variable transmissions and drivelines that incorporate such variable transmissions are provided.
Abstract:
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The variable transmissions can be operated in at least two different operating modes, depending on an engagement status of the clutches therein. Methods of running the variable transmissions and drivelines that incorporate such variable transmissions are provided.
Abstract:
Devices and methods are provided herein for the transmission of power in motor vehicles. Power is transmitted in a smoother and more efficient manner by splitting torque into two or more torque paths. A continuously variable transmission is provided with a ball variator assembly having an array of balls, a planetary gearset coupled thereto and an arrangement of rotatable shafts with multiple gears and clutches that extend the ratio range of the variator. In some embodiments, clutches are coupled to the gear sets to enable synchronous shifting of gear modes.
Abstract:
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The variable transmissions can be operated in at least two different operating modes, depending on an engagement status of the clutches therein. Methods of running the variable transmissions and drivelines that incorporate such variable transmissions are provided.
Abstract:
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of transmitting large amounts of power. Variable transmissions comprising three clutches, three grounding clutches or brakes, and a variator comprising a plurality of tilting variators balls disposed between a first drive ring and a second drive ring allow a single variator to function as an infinitely variable transmission when power is inputted to the carrier assembly and as a continuously variable transmission when power is inputted through a first ring assembly. Certain embodiments include a differential that allows a parallel power path around the variator to improve the variator torque capacity and a direct drive mode to improve the efficiency of the variator.