Abstract:
Methods and apparatuses are provided for communication between a user equipment (UE) and a node B in a communication system. The UE generates a media access control protocol data unit (MAC PDU) including at least one field related to an amount of data, if the data becomes available for transmission. The MAC-PDU including the at least one field related to the amount of data is transmitted to the node B. Grant information is received from the node B. The data is transmitted to the Node B based on the grant information. Each of the at least one field related to the amount of data corresponds to a respective identifier.
Abstract:
A method and apparatus are provided for transmitting an uplink scheduling request in a mobile communication system. Scheduling request transmission cycles are set according to priorities between a terminal and a radio resource controlling node. The terminal transmits the scheduling request to the radio resource controlling node according to a scheduling request transmission cycle corresponding to a highest priority among priorities corresponding to uplink data or uplink control signals, if the uplink data or the uplink control signals are generated from an upper layer. The terminal receives scheduling information from the radio resource controlling node, and determines whether resource allocation information is included in the scheduling information. The terminal cyclically transmits the scheduling request to the radio resource controlling node in the scheduling request transmission cycle, if the resource allocation information is not included in the scheduling information.
Abstract:
A method and apparatus for performing communication in a wireless communication system are provided. The method includes identifying a transmission mode configured for a serving cell by a Base Station (BS), by a User Equipment (UE), identifying an antenna configuration of the BS by the UE, determining the number of bits for a Rank Indication (RI) representing the number of layers based on the transmission mode and the antenna configuration, and generating an RI using the determined number of bits and transmitting the RI in transmission resources of the serving cell to the BS by the UE.
Abstract:
A method for performing a Discontinuous Reception (DRX) operation by a connected mode User Equipment (UE) in a mobile communication system. The method includes waking up at a wake-up timing, and determining whether an incoming data indication is received from a Node B; reestablishing uplink synchronization upon receipt of the incoming data indication; and waking up after sleeping for a time from the incoming data indication reception timing, receiving a transmission resource allocation message from the Node B, and receiving downlink data over allocated transmission resources.
Abstract:
A method for configuring configuration information with a user equipment in a mobile communication system is provided. The method includes determining, upon receipt of a Physical Uplink Control Channel/Sounding Reference Signal (PUCCH/SRS) release request from a lower layer, whether configuration information required for a transmission mode supporting Coordinated Multi-Point (CoMP) has been configured, and if the configuration information has been configured, reconfiguring a setting state of the configuration information.
Abstract:
Improving communication efficiency in handover re-establishing an ARQ entity in a mobile communication system is disclosed. The method includes transmitting first Packet Data Convergence Protocol (PDCP) Packet Data Units (PDUs) correctly received from the source cell, together with a special indication requiring reordering of the first PDCP PDUs, from a Radio Link Control (RLC) receiving buffer to a PDCP receiving entity when a handover command message from a source cell to a target cell is received; buffering the first PDCP PDUs in a PDCP PDU reordering buffer by the PDCP receiving entity in response to the special indication; and when a second PDCP PDU is received from the target cell through a new RLC receiving entity for the target cell, outputting third PDCP PDUs up to a PDCP PDU before a first missing PDCP PDU having a sequence number higher than that of the second PDCP PDU from the PDCP reordering buffer. In the method, a PDCP entity performs reordering, thereby improving efficiency of communication.
Abstract:
A method and apparatus are provided for transmitting an uplink scheduling request in a mobile communication system. Scheduling request transmission cycles are set according to priorities between a terminal and a radio resource controlling node. The terminal transmits the scheduling request to the radio resource controlling node according to a scheduling request transmission cycle corresponding to a highest priority among priorities corresponding to uplink data or uplink control signals, if the uplink data or the uplink control signals are generated from an upper layer. The terminal receives scheduling information from the radio resource controlling node, and determines whether resource allocation information is included in the scheduling information. The terminal cyclically transmits the scheduling request to the radio resource controlling node in the scheduling request transmission cycle, if the resource allocation information is not included in the scheduling information.
Abstract:
A method for transmitting a random access preamble using a random access procedure in a mobile communication system. The random access preamble transmission method includes selecting, upon triggering of the random access procedure, one of random access preamble sets predefined between a User Equipment (UE) and an Evolved Node B (ENB) according to whether a radio channel condition is greater than a radio channel condition threshold and a size of a message that the UE will transmit after transmission of the random access preamble is greater than a minimum message size, randomly selecting a random access preamble from the selected random access preamble set, and transmitting the selected random access preamble to the ENB over a random access channel.
Abstract:
Method for radio communication with base station, by user equipment (UE), apparatus in UE for radio communication with base station, a method for radio communication with a UE by a base station, and an apparatus in a base station for radio communication with a UE are provided. The method for radio communication with a base station, by a UE, includes determining whether to start a first timer based on a predetermined condition, in response to a buffer status reporting triggered; starting the first timer in response to the predetermined condition being satisfied; in response to an uplink resource for a buffer status report transmission being available before the first timer expires, transmitting an uplink packet including a buffer status report using the available uplink resource; and in response to no uplink resource for the buffer status report transmission being available and the first timer expiring, transmitting a scheduling request to the base station.
Abstract:
Method for radio communication with base station, by user equipment (UE), apparatus in UE for radio communication with base station, a method for radio communication with a UE by a base station, and an apparatus in a base station for radio communication with a UE are provided. The method for radio communication with a base station, by a UE, includes identifying whether an uplink resource allocated for data transmission to the base station is available, in response to a buffer status report for transmission to the base station being triggered; transmitting an uplink packet including the buffer status report using the available uplink resource, in response to the uplink resource being available; and transmitting a scheduling request to the base station, in response to the UE not having an available uplink resource and a first timer being expired, wherein the first timer starts when the buffer status report is triggered.