Abstract:
A method, system, and non-transitory computer-readable recording medium of decoding a signal are provided. The method includes receiving signal to be decoded, where signal includes at least one symbol; decoding signal in stages, where each at least one symbol of signal is decoded into at least one bit per stage, wherein Log-Likelihood Ratio (LLR) and a path metric are determined for each possible path for each at least one bit at each stage; determining magnitudes of the LLRs; identifying K bits of the signal with smallest corresponding LLR magnitudes; identifying, for each of the K bits, L possible paths with largest path metrics at each decoder stage for a user-definable number of decoder stages; performing forward and backward traces, for each of the L possible paths, to determine candidate codewords; performing a Cyclic Redundancy Check (CRC) on the candidate codewords; and stopping after a first candidate codeword passes the CRC.
Abstract:
Method for decoding signal includes receiving signal, where signal includes at least one symbol; decoding signal in stages, where each at least one symbol of signal is decoded into at least one bit per stage, wherein Log-Likelihood Ratio (LLR) for each at least one bit at each stage is determined, and identified in vector LAPP; performing Cyclic Redundancy Check (CRC) on LAPP, and stopping if LAPP passes CRC; otherwise, determining magnitudes of LLRs in LAPP; identifying K LLRs in LAPP with smallest magnitudes and indexing K LLRs as r={r(1), r(2), . . . , r(K)}; setting Lmax to maximum magnitude of LLRs in LAPP or maximum possible LLR quantization value; setting v=1; generating {tilde over (L)}A(r(k))=LA(r(k))−Lmaxvksign[LAPP(r(k))], for k=1, 2, . . . , K; decoding with {tilde over (L)}A to identify {tilde over (L)}APP, wherein {tilde over (L)}APP is LLR vector; and performing CRC on {tilde over (L)}APP, and stopping if {tilde over (L)}APP passes CRC or v=2K-1; otherwise, incrementing v and returning to generating {tilde over (L)}A(r(k)).
Abstract:
A method and apparatus are provided. The method includes configuring a plurality of long short term memory (LSTM) networks, wherein each of the plurality of LSTM networks is at a different network layer, configuring a plurality of memory cells in a spatial domain of the plurality of LSTM networks, configuring the plurality of memory cells in a temporal domain of the plurality of LSTM networks, controlling an output of each of the plurality of LSTM networks based on highway connections to outputs from at least one previous layer and at least one previous time of the plurality of LSTM networks, and controlling the plurality of memory cells based on highway connections to memory cells from the at least one previous time.
Abstract:
A method and system for decoding a signal are provided. The method includes receiving a signal, where the signal includes at least one symbol; decoding the signal in stages, where each at least one symbol is decoded into at least one bit per stage, wherein a Log-Likelihood Ratio (LLR) and a path metric are determined for each possible path for each at least one bit at each stage; determining the magnitudes of the LLRs; identifying K bits of the signal with the smallest corresponding LLR magnitudes; identifying, for each of the K bits, L possible paths with the largest path metrics at each decoder stage for a user-definable number of decoder stages; performing forward and backward traces, for each of the L possible paths, to determine candidate codewords; performing a Cyclic Redundancy Check (CRC) on the candidate codewords, and stopping after a first candidate codeword passes the CRC.
Abstract:
A method, apparatus, and non-transitory computer-readable recording medium for generating an algebraic Spatially-Coupled Low-Density Parity-Check (SC LDPC) code are provided. The method includes selecting an LDPC block code over a finite field GF(q) with a girth of at least 6; constructing a parity-check matrix H from the selected LDPC block code; replicating H a user-definable number of times to form a two-dimensional array Hrep; constructing a masking matrix W with a user-definable spatially-coupled pattern; and masking a sub-matrix of Hrep using W to obtain a spatially-coupled parity-check matrix HSC, wherein a null space of HSC is the algebraic SC LDPC code.
Abstract:
A computing system includes: an inter-device interface configured to access a destination signal including an information portion for representing a content and an error-handling portion for describing the information portion relative to the content; a communication unit, coupled to the inter-device interface, configured to: generate a parity-check parameter based on a sparse configuration from the destination signal, and estimate the content based on decoding the information portion using the error-handling portion and the parity-check parameter.
Abstract:
A computing system includes: a communication unit configured to determine an interfering interface based on a device location for locating an interference-aware receiver for processing a receiver signal including an interference signal described by the interfering interface; and an inter-device interface, coupled with the communication unit, configured to communicate the interfering interface for communicating the interfering interface to the interference-aware receiver for processing the interference signal or a further instance thereof.
Abstract:
A computing system includes: an inter-device interface configured to receive a receiver signal for representing a serving signal; a communication unit, coupled to the inter-device interface, configured to: calculate a decoding result based on decoding the receiver signal, generate a parity portion adjustment for adjusting the decoding result, generate a systematic portion adjustment for adjusting the decoding result, and apply the parity portion adjustment and the systematic portion adjustment to the decoding result for determining the serving signal from the receiver signal.
Abstract:
An apparatus and method of constructing a universal polar code is provided. The apparatus includes a first function block configured to polarize and degrade a class of channels Wj to determine a probability of error Pe,j of each bit-channel of Wj, wherein jε{1, 2, . . . , s}, in accordance with a bit-channel index i; a second function block configured to determine a probability of error Pe(i) for the universal polar code for each bit-channel index i; a third function block configured to sort the Pe(i); and a fourth function block configured to determine a largest number k of bit-channels such that a sum of corresponding k bit-channel error probabilities Pe(i) is less than or equal to a target frame error rate Pt for the universal polar code, wherein the indices corresponding to the k smallest Pe(i) are good bit-channels for the universal polar code.
Abstract:
A concatenated encoder is provided that includes an outer encoder, a symbol interleaver and a polar inner encoder. The outer encoder is configured to encode a data stream using an outer code to generate outer codewords. The symbol interleaver is configured to interleave symbols of the outer codewords and generate a binary stream. The polar inner encoder is configured to encode the binary stream using a polar inner code to generate an encoded stream. A concatenated decoder is provided that includes a polar inner decoder, a symbol de-interleaver and an outer decoder. The polar inner decoder is configured to decode an encoded stream using a polar inner code to generate a binary stream. The symbol de-interleaver is configured to de-interleave symbols in the binary stream to generate outer codewords. The outer decoder is configured to decode the outer codewords using an outer code to generate a decoded stream.