Abstract:
Methods, systems, and devices for wireless communication are described. In an FDD system, a UE may identify an indicator associated with ultra-reliable low latency communications (URLLC) while communicating in a sidelink channel. The UE may also identify dedicated uplink resources in the sidelink channel, and reserve the dedicated uplink resources. The dedicated uplink resources may be reserved for an acknowledgement/negative acknowledgement (ACK/NACK) feedback or for a scheduling request (SR). URLLC data may be communicated, and the reserved uplink resources may be utilized to transmit an ACK/NACK feedback or a SR. In a TDD system, a base station may transmit information identifying dedicated resources for URLLC data. In some cases, a base station may transmit an indicator channel, which a sidelink UE may monitor to determine the presence of URLLC data, and respond accordingly.
Abstract:
A first device may configure a second device, such as a sidelink receiver, so that an interference protection zone surrounding the second device may be dynamically adjusted in size based, for example, on various objectives and/or use cases recognized by the first device. The interference protection zone may be, for example, an area surrounding the second device, within which neighboring devices may be silenced. Changes to the interference protection zone may be achieved by providing a dynamic clear-to-send (CTS) transmit power scaling parameter, that is different from a pre-assigned constant parameter for CTS power control stored at the second device, to the second device from the first device. The second device may calculate CTS channel power using at least the dynamic CTS transmit power scaling parameter and the received RTS channel power. The second device may send a CTS message in a CTS channel at the calculated CTS channel power.
Abstract:
Aspects of the present disclosure provide solutions that can mitigate interference between sidelinks. A user equipment (UE) can directly communicate with another device using a sidelink or sidelink channel without necessarily relying on a scheduling entity (e.g., a base station). The UE may transmit a direction selection signal (DSS) to another sidelink entity to indicate a requested duration of time to keep a first sidelink available for a plurality of transmission time intervals. The UE may perform various processes to mitigate interference between the first sidelink and a second sidelink established between other sidelink entities. To mitigate interference between sidelinks, for example, the UE may puncture its sidelink data during a time period that overlaps with a destination receive signal (DRS) of another sidelink. In another example, the UE may receive a retransmission of a DRS that may not be received due to sidelink interference.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The apparatus receives a D2D resource message based on a change in an uplink-downlink subframe configuration of at least one frame. The D2D resource message enables the apparatus to determine D2D resources allocated for D2D transmissions after the change in the uplink-downlink subframe configuration. The apparatus determines a subset of the D2D resources to be used for performing D2D transmissions based on the received D2D resource message.
Abstract:
Methods, systems, and devices for wireless communication are described. A first cell may receive a message indicating that a second cell has a priority transmission scheduled using a transmit time interval (TTI) that is shorter than a TTI used by the first cell. The first cell may limit, based on the message, a communication parameter associated with communications between the first cell and a user equipment (UE) during the scheduled priority transmission.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may perform a clear channel assessment (CCA) procedure on a channel that includes multiple sub-bands of a radio frequency spectrum band. The base station may determine that the channel is available based on the CCA and transmit a special header in the channel. In some examples, the special header may include multiple transmission time intervals (TTIs), where each TTI may include a header packet in each sub-band of the radio frequency spectrum band. In some cases, the header packet may include a clear to send (CTS)-to-self frame structure. The base station may transmit a first TTI across each of the sub-bands at a first power level, and transmit additional TTIs across the sub-bands at a different power level. Additional header packets may be transmitted at the boundaries of subsequent subframes.
Abstract:
A method, an apparatus, and a computer program product for relaying a packet are provided. The apparatus receives at least one packet and reduces a degree of the at least one packet. The apparatus further processes the at least one packet based on the reduced degree, generates a combined packet by combining the at least one processed packet with at least one other processed packet based on the reduced degree and a weight of each of the processed packets, and transmits the combined packet.
Abstract:
Methods, systems, and devices for wireless communications are described. A base station may transmit semi-persistent scheduling (SPS) messages to a set of user equipments (UEs) using respective resources corresponding to each UE. The base station may receive, from each of a subset of UEs from the set of UEs, a negative acknowledgement (NACK) message associated with the SPS messages. The base station may transmit a group downlink control message including information associated with a downlink resource configuration for retransmission of the respective SPS messages to the subset of UEs. The base station may retransmit SPS messages to each of the subset of UEs using the downlink resource configuration.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive, from a base station, an indicator associated with a hybrid automatic repeat request (HARQ) process, wherein the indicator indicates a number of mini-slots to be bundled for a HARQ transmission of the HARQ process; and decode the HARQ transmission based at least in part on the mini-slots. In some aspects, a base station may transmit an indicator, associated with a HARQ process, to a user equipment, wherein the indicator indicates a number of mini-slots to be bundled for a HARQ transmission of the HARQ process; and transmit the HARQ transmission to the user equipment using the mini-slots. Numerous other aspects are provided.
Abstract:
Methods and apparatus for wireless communication are provided. In aspects, a method of wireless communication is provided, including scheduling ultra-reliable and low-latency communications (URLLC) communication in a first set of one or more portions of a self-contained wireless communication structure having a plurality of portions, and adjusting one or more (e.g., remaining) portions of the self-contained wireless communication structure subsequent the first set of one or more portions based on the scheduling. In aspects, the method further includes transmitting an indicator of the adjusting to one or more user equipments. Numerous other aspects are provided.