Abstract:
Certain aspects of the present disclosure provide techniques that may allow a device participating in a setup procedure to efficiently propose a range of values for a negotiated parameter. The techniques may reduce setup time, for example, allowing a responder to accept a value within the proposed range which may eliminate overhead associated with some of the back and forth message exchange of typical negotiations.
Abstract:
Method, systems, and apparatuses are described for wireless communications. More particularly, a wireless station may connect to a wireless network using a first radio frequency (RF) band and detect a signal strength of the first RF band is greater than a roaming threshold. The wireless station may perform a plurality of scans for support by the wireless network of a second RF band in response to the detected signal strength. Each scan may occur when the signal strength of the first RF band is greater than the roaming threshold. The wireless station may selectively connect to the wireless network using the second RF band based at least in part on the scanning and a throughput supported by the wireless network over the second RF band. The first RF band may be a 2.4 GHz band and the second RF band may be a 5 GHz band.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer-readable media, for steering an association of a device in a network having multiple access points (APs). In one aspect, a first AP can obtain per-AP metric information regarding a plurality of other APs in the network. The per-AP metric information may include backhaul performance information regarding at least one wireless backhaul channel in the network. The per-AP metric information may include an estimated air time fraction value reported by the other APs. A selection to steer the device from the first AP to a second AP can be based, at least in part, on the per-AP metric information. In some implementations, a Multi-AP Controller can redistribute per-AP metric information collected from multiple APs in the network. In some implementations, a topology of the network may be optimized by steering a child AP to another wireless backhaul link.
Abstract:
Methods, systems, and apparatuses are described for wireless communications. More particularly, an access point (AP) identifies a plurality of multi-user multiple-input multiple-output (MU-MIMO) groups associated with a wireless station (STA). The AP determines a communication metric associated with each of the plurality of MU-MIMO groups. The communication metric provides an indication of the compatibility of the STAs in the MU-MIMO group. The AP prioritizes at least one of the plurality of MU-MIMO groups based at least in part on the communication metric associated with the prioritized MU-MIMO group. The AP creates a preferred group list and/or a blacklisted group list and included the prioritized MU-MIMO group in the appropriate group list.
Abstract:
Methods, systems, and devices are described for wireless communications. A communication device may utilize enhanced roaming techniques to use multiple channel maps for a high density AP environment. For instance, a communication device performs at least a partial channel scan by a communications device while the communications device is connected to an access point (AP) associated with a basic service set identifier (BSSID). The communication device further selects a channel map from a plurality of channel maps associated with the BSSID based at least in part on the partial scan, wherein each of the channel maps associated with the BSSID comprises a different set of signal strength measurements for a same set of neighboring APs. The communication device also uses the selected channel map as a basis for a roaming operation by the wireless device.
Abstract:
Aspects of the present disclosure describe various techniques for handling data stall in wireless local area networks (WLANs). These techniques include, for example, a method in which wireless communications are switched at a wireless station from a first network device associated with a first radio access technology (RAT) (e.g., WLAN technology) to a second network device associated with a second RAT (e.g., wireless wide area network (WWAN) technology). The wireless station may then monitor network devices associated with the first RAT, including the first network device. The wireless station may filter results from the monitoring based at least in part on one or more threshold value and identify, based on the filtered results, one of the network devices as suitable for the wireless communications. The wireless communications may then be switched at the wireless station from the second network device to the one network device identified as suitable for the wireless communications.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for communication time slot allocation in a communication network. In one aspect, a first network device may determine that a second network device will transmit one or more packets associated with a first latency, and determine that a third network device will transmit one or more packets associated with a second latency. The first network device may determine to allocate a greater quantity of communication time slots to the second network device than to the third network device based, at least in part, on the first latency being less than the second latency. The first network device may allocate a first plurality of communication time slots of a beacon period to the second network device, and allocate a second plurality of communication time slots of the beacon period to the third network device.
Abstract:
The present application relates generally to wireless communications, and more specifically to systems, methods, and devices for deferral based on transmission opportunity (TXOP) information. One aspect of the present disclosure provides An apparatus configured to wirelessly communicate. The apparatus includes a processing system configured to obtain a deferral-related parameter from a packet transmitted on a shared wireless access medium and decide whether to defer transmission on the shared wireless access medium based, at least in part, on the at least one deferral-related parameter.
Abstract:
A network device may transmit a short packet when the length of application data that will be transmitted does not exceed a threshold length. In some embodiments, the network device may transmit the application data in a frame control field of the short packet. The short packet may not include a payload field. In other embodiments, the network device may support multiple short payload field lengths and may transmit the application data in a short payload field with an appropriate short payload field length. The network device may also support communication techniques to transmit the application data in the short packet.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.