Abstract:
This disclosure provides systems, methods and apparatuses for channel selection and channel selection planning in a network including a root AP (RAP) and a number of satellite APs (SAPs). The root AP may assign operating channels for one or more of the satellite APs in a manner that optimizes network performance by considering the impact that each of the satellite APs (as well as their respective client devices) may have on the network. In some implementations, the root AP may provide centralized channel selection planning for the network based a number of network parameters observed by one or more of the satellite APs. The network parameters may include, for example, channel conditions, traffic loads, traffic patterns, service needs of client devices, available channels, and other network utilization information observed by one or more of the satellite APs.
Abstract:
Disclosed are methods, systems and devices for addressing effects of transmission by a transmitter in an assigned uplink communication channel on a signal received at a receiver co-located with the transmitter. In a particular embodiment, communication in an alternative communication channel may be initiated in response to a determination that uplink transmission in the assigned communication channel likely interferes with at least one radio frequency receiving function.
Abstract:
A first access point (AP) detects a communication between a client device and a second AP. The first AP determines at least one criteria for AP steering is satisfied. AP steering is then used by the first AP to cause the client device to associate with the first AP, or a particular network of the first AP. For example, the first AP may transmit a disassociation message to the client device. The disassociation message may identify the second AP associated with the client device and cause the client device to disassociate from the second AP. After the client device disassociates from the second AP, the client device may select and associate with the first AP. The first AP may manage which network the client device associates with using a blacklist at the first AP.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. A multi-radio device controls wireless communications by identifying one or more connection points between radio(s) of the multi-radio device and an operating system executing on a host device, analyzing a policy relating to the multi-radio device, and exposing, to the operating system, a subset of the connection points based on the policy. A modem manages a connection to an applications processor (AP) by virtualizing physical communication interfaces at the modem, providing a single Internet protocol (IP) interface representing the virtualized physical communication interfaces to a high level operating system (HLOS) at the AP, detecting a physical communication interface connected to the modem, and determining whether to expose the detected physical communication interface to the HLOS as a standalone virtualized physical communication interface, or hide the detected physical communication interface as part of an existing virtualized physical communication interface.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. A multi-radio device controls wireless communications by identifying one or more connection points between radio(s) of the multi-radio device and an operating system executing on a host device, analyzing a policy relating to the multi-radio device, and exposing, to the operating system, a subset of the connection points based on the policy. A modem manages a connection to an applications processor (AP) by virtualizing physical communication interfaces at the modem, providing a single Internet protocol (IP) interface representing the virtualized physical communication interfaces to a high level operating system (HLOS) at the AP, detecting a physical communication interface connected to the modem, and determining whether to expose the detected physical communication interface to the HLOS as a standalone virtualized physical communication interface, or hide the detected physical communication interface as part of an existing virtualized physical communication interface.
Abstract:
Method, systems, and apparatuses are described for wireless communications. More particularly, a wireless station may connect to a wireless network using a first radio frequency (RF) band and detect a signal strength of the first RF band is greater than a roaming threshold. The wireless station may perform a plurality of scans for support by the wireless network of a second RF band in response to the detected signal strength. Each scan may occur when the signal strength of the first RF band is greater than the roaming threshold. The wireless station may selectively connect to the wireless network using the second RF band based at least in part on the scanning and a throughput supported by the wireless network over the second RF band. The first RF band may be a 2.4 GHz band and the second RF band may be a 5 GHz band.
Abstract:
Methods, systems, and devices for wireless communication are described. Devices in a wireless network may be grouped into a basic service set (BSS), which may enable coordination of communications within the network. A BSS may have an associated coverage area. Some devices may be operable to communicate using extended range (ER) transmissions, which may increase the size of the coverage area associated with the BSS. In some cases, an access point (AP) may support multiple BSSs with equivalent security profiles. A first BSS may exclusively support ER transmissions, while a second BSS may support non-ER transmissions. Techniques are described for a wireless device to discover one or more of the BSSs associated with a given AP, associate with at least one of the discovered BSSs, and in some cases switch between the BSSs with equivalent security profiles. The discussed techniques may provide more efficient communications in the wireless network.
Abstract:
Method, systems, and apparatuses are described for wireless communications. More particularly, a wireless station may connect to a wireless network using a first radio frequency (RF) band and detect a signal strength of the first RF band is greater than a roaming threshold. The wireless station may perform a plurality of scans for support by the wireless network of a second RF band in response to the detected signal strength. Each scan may occur when the signal strength of the first RF band is greater than the roaming threshold. The wireless station may selectively connect to the wireless network using the second RF band based at least in part on the scanning and a throughput supported by the wireless network over the second RF band. The first RF band may be a 2.4 GHz band and the second RF band may be a 5 GHz band.
Abstract:
A first access point (AP) detects a communication between a client device and a second AP. The first AP determines at least one criteria for AP steering is satisfied. AP steering is then used by the first AP to cause the client device to associate with the first AP, or a particular network of the first AP. For example, the first AP may transmit a disassociation message to the client device. The disassociation message may identify the second AP associated with the client device and cause the client device to disassociate from the second AP. After the client device disassociates from the second AP, the client device may select and associate with the first AP. The first AP may manage which network the client device associates with using a blacklist at the first AP.
Abstract:
Method, systems, and apparatuses are described for wireless communications. More particularly, a wireless station may connect to a wireless network using a first radio frequency (RF) band and detect a signal strength of the first RF band is greater than a roaming threshold. The wireless station may perform a plurality of scans for support by the wireless network of a second RF band in response to the detected signal strength. Each scan may occur when the signal strength of the first RF band is greater than the roaming threshold. The wireless station may selectively connect to the wireless network using the second RF band based at least in part on the scanning and a throughput supported by the wireless network over the second RF band. The first RF band may be a 2.4 GHz band and the second RF band may be a 5 GHz band.